ZetCode

Python Radix Sort

last modified March 8, 2025

In this article, we explain and implement the Radix Sort algorithm in Python.

An algorithm is a step-by-step procedure to solve a problem or perform a computation. Algorithms are fundamental to computer science and programming.

Sorting is the process of arranging data in a specific order, such as ascending or descending. Sorting is essential for efficient data retrieval and analysis.

Common Sorting Algorithms

Some common sorting algorithms include:

Radix Sort

Radix Sort is a non-comparative sorting algorithm that sorts data by processing individual digits or characters. It is efficient for sorting integers and strings.

Radix Sort Example

The following example demonstrates how to implement Radix Sort in Python.

radix_sort.py
def counting_sort(arr, exp):
    n = len(arr)
    output = [0] * n
    count = [0] * 10

    for i in range(n):
        index = arr[i] // exp
        count[index % 10] += 1

    for i in range(1, 10):
        count[i] += count[i - 1]

    i = n - 1
    while i >= 0:
        index = arr[i] // exp
        output[count[index % 10] - 1] = arr[i]
        count[index % 10] -= 1
        i -= 1

    for i in range(n):
        arr[i] = output[i]

def radix_sort(arr):
    max_num = max(arr)
    exp = 1
    while max_num // exp > 0:
        counting_sort(arr, exp)
        exp *= 10

arr = [170, 45, 75, 90, 802, 24, 2, 66]
radix_sort(arr)
print("Sorted array:", arr)

The example sorts an array of integers using Radix Sort. The algorithm processes digits from the least significant to the most significant.

$ ./radix_sort.py 
Sorted array: [2, 24, 45, 66, 75, 90, 170, 802]

Sorting Textual Data

Radix Sort can also be used to sort strings. The following example sorts a list of strings in ascending and descending order.

radix_sort_strings.py
def counting_sort_strings(arr, index):
    n = len(arr)
    output = [''] * n
    count = [0] * 256

    for s in arr:
        char = s[index] if index < len(s) else '\0'
        count[ord(char)] += 1

    for i in range(1, 256):
        count[i] += count[i - 1]

    i = n - 1
    while i >= 0:
        char = arr[i][index] if index < len(arr[i]) else '\0'
        output[count[ord(char)] - 1] = arr[i]
        count[ord(char)] -= 1
        i -= 1

    for i in range(n):
        arr[i] = output[i]

def radix_sort_strings(arr, reverse=False):
    max_len = max(len(s) for s in arr)
    for i in range(max_len - 1, -1, -1):
        counting_sort_strings(arr, i)
    if reverse:
        arr.reverse()

arr = ["apple", "banana", "kiwi", "mango", "cherry"]
radix_sort_strings(arr)
print("Sorted array (ascending):", arr)

radix_sort_strings(arr, reverse=True)
print("Sorted array (descending):", arr)

The example sorts a list of strings using Radix Sort. The algorithm processes characters from the least significant to the most significant.

$ ./radix_sort_strings.py 
Sorted array (ascending): ['apple', 'banana', 'cherry', 'kiwi', 'mango']
Sorted array (descending): ['mango', 'kiwi', 'cherry', 'banana', 'apple']

Radix Sort vs Quick Sort

Radix Sort and Quick Sort are both efficient sorting algorithms, but they have different use cases. Radix Sort is ideal for sorting integers and strings, while Quick Sort is a general-purpose sorting algorithm.

The following example compares the performance of Radix Sort and Quick Sort.

radix_vs_quick.py
import time
import random

import time
import random

def counting_sort(arr, exp):
    n = len(arr)
    output = [0] * n
    count = [0] * 10

    for i in range(n):
        index = arr[i] // exp
        count[index % 10] += 1

    for i in range(1, 10):
        count[i] += count[i - 1]

    i = n - 1
    while i >= 0:
        index = arr[i] // exp
        output[count[index % 10] - 1] = arr[i]
        count[index % 10] -= 1
        i -= 1

    for i in range(n):
        arr[i] = output[i]

def radix_sort(arr):
    max_num = max(arr)
    exp = 1
    while max_num // exp > 0:
        counting_sort(arr, exp)
        exp *= 10

def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quick_sort(left) + middle + quick_sort(right)

arr = [random.randint(0, 10000) for _ in range(10000)]

start = time.time()
radix_sort(arr.copy())
end = time.time()
print("Radix Sort time:", end - start)

start = time.time()
quick_sort(arr.copy())
end = time.time()
print("Quick Sort time:", end - start)

The example benchmarks Radix Sort and Quick Sort on a large array of random integers.

Source

Radix Sort on Wikipedia

In this article, we have implemented and explained the Radix Sort algorithm in Python.

Author

My name is Jan Bodnar, and I am a passionate programmer with extensive programming experience. I have been writing programming articles since 2007. To date, I have authored over 1,400 articles and 8 e-books. I possess more than ten years of experience in teaching programming.

List all Python tutorials.