Python PostgreSQL
last modified January 29, 2024
In this article we show how to program PostgreSQL databases in Python with psycopg2 module.
PostgreSQL
PostgreSQL is a powerful, open source object-relational database system. It is a multi-user database management system. It runs on multiple platforms including Linux, FreeBSD, Solaris, Microsoft Windows and Mac OS X. PostgreSQL is developed by the PostgreSQL Global Development Group.
The psycopg2 module
There are several Python libraries for PostgreSQL. In this article we use the
psycopg2
module. It is a PostgreSQL database adapter for the Python
programming language. It is mostly implemented in C as a
libpq
wrapper.
$ pip install psycopg2
We install the psycopg2
module.
Python psycopg2 version example
In the first code example, we get the version of the PostgreSQL database.
#!/usr/bin/python import psycopg2 import sys con = None try: con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') cur = con.cursor() cur.execute('SELECT version()') version = cur.fetchone()[0] print(version) except psycopg2.DatabaseError as e: print(f'Error {e}') sys.exit(1) finally: if con: con.close()
In the program we connect to the previously created
testdb
database. We execute an SQL statement which returns the
version of the PostgreSQL database.
import psycopg2
The psycopg2
is a Python module which is used to work
with the PostgreSQL database.
con = None
We initialize the con variable to None
. In case we could not create
a connection to the database (for example the disk is full), we would not have a
connection variable defined. This would lead to an error in the finally clause.
con = psycopg2.connect(database='testdb', user='postgres', password='s$cret')
The connect
method creates a new database session and returns a
connection object. The user was created without a password. On localhost, we can
omit the password option. Otherwise, it must be specified.
cur = con.cursor() cur.execute('SELECT version()')
From the connection, we get the cursor object. The cursor is used to traverse
the records from the result set. We call the execute
method of
the cursor and execute the SQL statement.
version = cur.fetchone()[0]
We fetch the data. Since we retrieve only one record, we call the
fetchone
method.
print(version)
We print the data that we have retrieved to the console.
except psycopg2.DatabaseError as e: print(f'Error {e}') sys.exit(1)
In case of an exception, we print an error message and exit the program with an error code 1.
finally: if con: con.close()
In the final step we release the resources.
$ version.py PostgreSQL 11.1, compiled by Visual C++ build 1914, 64-bit
In the second example, we again get the version of the PostgreSQL database. This
time we use the with
keyword.
#!/usr/bin/python import psycopg2 con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') with con: cur = con.cursor() cur.execute('SELECT version()') version = cur.fetchone()[0] print(version)
The program returns the current version of the PostgreSQL database. With the use of the with keyword. The code is more compact.
with con:
With the with
keyword, Python automatically releases the resources.
It also provides error handling.
Python psycopg2 execute
We create the cars
table and insert several rows to it.
The execute
executes a database operation (query or command).
#!/usr/bin/python import psycopg2 con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') with con: cur = con.cursor() cur.execute("DROP TABLE IF EXISTS cars") cur.execute("CREATE TABLE cars(id SERIAL PRIMARY KEY, name VARCHAR(255), price INT)") cur.execute("INSERT INTO cars(name, price) VALUES('Audi', 52642)") cur.execute("INSERT INTO cars(name, price) VALUES('Mercedes', 57127)") cur.execute("INSERT INTO cars(name, price) VALUES('Skoda', 9000)") cur.execute("INSERT INTO cars(name, price) VALUES('Volvo', 29000)") cur.execute("INSERT INTO cars(name, price) VALUES('Bentley', 350000)") cur.execute("INSERT INTO cars(name, price) VALUES('Citroen', 21000)") cur.execute("INSERT INTO cars(name, price) VALUES('Hummer', 41400)") cur.execute("INSERT INTO cars(name, price) VALUES('Volkswagen', 21600)")
The program creates the cars
table and inserts eight rows into the
table.
cur.execute("CREATE TABLE cars(id SERIAL PRIMARY KEY, name VARCHAR(20), price INT)")
This SQL statement creates a new cars
table. The table has
three columns.
cur.execute("INSERT INTO cars(name, price) VALUES('Audi', 52642)") cur.execute("INSERT INTO cars(name, price) VALUES('Mercedes', 57127)")
These two lines insert two cars into the table.
$ psql -U postgres testdb psql (11.1) Type "help" for help. testdb=# SELECT * FROM cars; id | name | price ----+------------+-------- 1 | Audi | 52642 2 | Mercedes | 57127 3 | Skoda | 9000 4 | Volvo | 29000 5 | Bentley | 350000 6 | Citroen | 21000 7 | Hummer | 41400 8 | Volkswagen | 21600 (8 rows)
We verify the written data with the psql
tool.
Python psycopg2 executemany
The executemany
method is a convenience method for launching a
database operation (query or command) against all parameter tuples or mappings
found in the provided sequence. The function is mostly useful for commands that
update the database: any result set returned by the query is discarded.
#!/usr/bin/python import psycopg2 cars = ( (1, 'Audi', 52642), (2, 'Mercedes', 57127), (3, 'Skoda', 9000), (4, 'Volvo', 29000), (5, 'Bentley', 350000), (6, 'Citroen', 21000), (7, 'Hummer', 41400), (8, 'Volkswagen', 21600) ) con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') with con: cur = con.cursor() cur.execute("DROP TABLE IF EXISTS cars") cur.execute("CREATE TABLE cars(id SERIAL PRIMARY KEY, name VARCHAR(255), price INT)") query = "INSERT INTO cars (id, name, price) VALUES (%s, %s, %s)" cur.executemany(query, cars) con.commit()
This example drops the cars
table if it exists and (re)creates it.
cur.execute("DROP TABLE IF EXISTS cars") cur.execute("CREATE TABLE cars(id SERIAL PRIMARY KEY, name VARCHAR(255), price INT)")
The first SQL statement drops the cars
table if it exists.
The second SQL statement creates the cars
table.
query = "INSERT INTO cars (id, name, price) VALUES (%s, %s, %s)"
This is the query that we use.
cur.executemany(query, cars)
We insert eight rows into the table using the convenience executemany
method. The first parameter of this method is a parameterized SQL statement.
The second parameter is the data, in the form of a tuple of tuples.
Python psycopg2 last inserted row id
The psycopg2
does not support the lastrowid
attribute.
To return the id of the last inserted row, we have to use PostgreSQL's
RETURNING id
clause.
#!/usr/bin/python import psycopg2 con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') with con: cur = con.cursor() cur.execute("DROP TABLE IF EXISTS words") cur.execute("CREATE TABLE words(id SERIAL PRIMARY KEY, word VARCHAR(255))") cur.execute("INSERT INTO words(word) VALUES('forest') RETURNING id") cur.execute("INSERT INTO words(word) VALUES('cloud') RETURNING id") cur.execute("INSERT INTO words(word) VALUES('valley') RETURNING id") last_row_id = cur.fetchone()[0] print(f"The last Id of the inserted row is {last_row_id}")
The program creates a new words
table and prints the Id of
the last inserted row.
$ lastrowid.py The last Id of the inserted row is 3
Python psycopg2 fetchall
The fetchall
fetches all the (remaining) rows of a query result,
returning them as a list of tuples. An empty list is returned if there is no
more record to fetch.
#!/usr/bin/python import psycopg2 con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') with con: cur = con.cursor() cur.execute("SELECT * FROM cars") rows = cur.fetchall() for row in rows: print(f"{row[0]} {row[1]} {row[2]}")
In this example, we retrieve all data from the cars
table.
cur.execute("SELECT * FROM cars")
This SQL statement selects all data from the cars
table.
rows = cur.fetchall()
The fetchall
method gets all records. It returns a result set.
Technically, it is a tuple of tuples. Each of the inner tuples represents a row
in the table.
for row in rows: print(f"{row[0]} {row[1]} {row[2]}")
We print the data to the console, row by row.
$ fetch_all.py 1 Audi 52642 2 Mercedes 57127 3 Skoda 9000 4 Volvo 29000 5 Bentley 350000 6 Citroen 21000 7 Hummer 41400 8 Volkswagen 21600
Python psycopg2 fetchone
The fetchone
returns the next row of a query result set,
returning a single tuple, or None
when no more data is available.
#!/usr/bin/python import psycopg2 con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') with con: cur = con.cursor() cur.execute("SELECT * FROM cars") while True: row = cur.fetchone() if row == None: break print(f"{row[0]} {row[1]} {row[2]}")
In this example we connect to the database and fetch the rows
of the cars
table one by one.
while True:
We access the data from the while loop. When we read the last row, the loop is terminated.
row = cur.fetchone() if row == None: break
The fetchone
method returns the next row from the table. If there
is no more data left, it returns None
. In this case we break the
loop.
print(f"{row[0]} {row[1]} {row[2]}")
The data is returned in the form of a tuple. Here we select records from the tuple. The first is the Id, the second is the car name and the third is the price of the car.
Python psycopg2 dictionary cursor
The default cursor retrieves the data in a tuple of tuples. With a dictionary cursor, the data is sent in a form of Python dictionaries. We can then refer to the data by their column names.
#!/usr/bin/python import psycopg2 import psycopg2.extras con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') with con: cursor = con.cursor(cursor_factory=psycopg2.extras.DictCursor) cursor.execute("SELECT * FROM cars") rows = cursor.fetchall() for row in rows: print(f"{row['id']} {row['name']} {row['price']}")
In this example, we print the contents of the cars
table
using the dictionary cursor.
import psycopg2.extras
The dictionary cursor is located in the extras module.
cursor = con.cursor(cursor_factory=psycopg2.extras.DictCursor)
We create a DictCursor
.
for row in rows: print(f"{row['id']} {row['name']} {row['price']}")
The data is accessed by the column names. The column names are folded to lowercase in PostgreSQL (unless quoted) and are case sensitive. Therefore, we have to provide the column names in lowercase.
Python psycopg2 parameterized queries
When we use parameterized queries, we use placeholders instead of directly writing the values into the statements. Parameterized queries increase security and performance.
The Python psycopg2
module supports two types of placeholders:
ANSI C printf format and the Python extended format.
#!/usr/bin/python import psycopg2 con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') uId = 1 uPrice = 62300 con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') with con: cur = con.cursor() cur.execute("UPDATE cars SET price=%s WHERE id=%s", (uPrice, uId)) print(f"Number of rows updated: {cur.rowcount}")
We update a price of one car. In this code example, we use the question mark placeholders.
cur.execute("UPDATE cars SET price=%s WHERE id=%s", (uPrice, uId))
The characters (%s) are placeholders for values. The values are added to the placeholders.
print(f"Number of rows updated: {cur.rowcount}")
The rowcount
property returns the number of updated
rows. In our case one row was updated.
$ parameterized_query.py Number of rows updated: 1 testdb=> SELECT * FROM cars WHERE id=1; id | name | price ----+------+------- 1 | Audi | 62300 (1 row)
The price of the car was updated. We check the change with the psql
tool.
The second example uses parameterized statements with Python extended format.
#!/usr/bin/python import psycopg2 uid = 3 con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') with con: cur = con.cursor() cur.execute("SELECT * FROM cars WHERE id=%(id)s", {'id': uid } ) row = cur.fetchone() print(f'{row[0]} {row[1]} {row[2]}')
We select a name and a price of a car using pyformat
parameterized
statement.
cur.execute("SELECT * FROM cars WHERE id=%(id)s", {'id': uid } )
The named placeholders start with a colon character.
$ parameterized_query2.py 3 Skoda 9000
Python psycopg2 mogrify
The mogrify
is a psycopg2 extension to the Python DB API that
returns a query string after arguments binding. The returned string is exactly
the one that would be sent to the database running the execute
method or similar.
#!/usr/bin/python import psycopg2 con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') cur = None with con: cur = con.cursor() print(cur.mogrify("SELECT name, price FROM cars WHERE id=%s", (2,))) # cur.execute("SELECT name, price FROM cars WHERE id=%s", (2,) ) # row = cur.fetchone() # print(f"{row[0]} {row[1]}")
The program shows a SELECT query string after binding the arguments with
mogrify
.
$ mogrify.py b'SELECT name, price FROM cars WHERE id=2'
Python psycopg2 insert image
In this section we are going to insert an image to the PostgreSQL database.
testdb=> CREATE TABLE images(id SERIAL PRIMARY KEY, data BYTEA);
For this example, we create a new table called images
. For the
images, we use the BYTEA
data type. It allows to store binary
strings.
#!/usr/bin/python import psycopg2 import sys def readImage(): fin = None try: fin = open("sid.jpg", "rb") img = fin.read() return img except IOError as e: print(f'Error {e.args[0]}, {e.args[1]}') sys.exit(1) finally: if fin: fin.close() con = None try: con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') cur = con.cursor() data = readImage() binary = psycopg2.Binary(data) cur.execute("INSERT INTO images(data) VALUES (%s)", (binary,)) con.commit() except psycopg2.DatabaseError as e: if con: con.rollback() print(f'Error {e}') sys.exit(1) finally: if con: con.close()
In the program, we read an image from the current working directory and write it
into the images
table of the PostgreSQL testdb
database.
try: fin = open("sid.jpg", "rb") img = fin.read() return img
We read binary data from the filesystem. We have a JPEG image
called sid.jpg
.
binary = psycopg2.Binary(data)
The data is encoded using the psycopg2
Binary
object.
cur.execute("INSERT INTO images(data) VALUES (%s)", (binary,))
This SQL statement is used to insert the image into the database.
Python psycopg2 read image
In this section, we are going to perform the reverse operation. We read an image from the database table.
#!/usr/bin/python import psycopg2 import sys def writeImage(data): fout = None try: fout = open('sid2.jpg', 'wb') fout.write(data) except IOError as e: print(f"Error {0}") sys.exit(1) finally: if fout: fout.close() try: con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') cur = con.cursor() cur.execute("SELECT data FROM images LIMIT 1") data = cur.fetchone()[0] writeImage(data) except psycopg2.DatabaseError as e: print(f'Error {e}') sys.exit(1) finally: if con: con.close()
We read image data from the images table and write it to another file, which we
call sid2.jpg
.
try: fout = open('sid2.jpg', 'wb') fout.write(data)
We open a binary file in a writing mode. The data from the database is written to the file.
cur.execute("SELECT data FROM images LIMIT 1") data = cur.fetchone()[0]
These two lines select and fetch data from the images
table. We
obtain the binary data from the first row.
Python PostgreSQL metadata
Metadata is information about the data in the database. Metadata in a PostgreSQL database contains information about the tables and columns, in which we store data. Number of rows affected by an SQL statement is a metadata. Number of rows and columns returned in a result set belong to metadata as well.
Metadata in PostgreSQL can be obtained using from the description
property of the cursor object or from the information_schema
table.
Next we print all rows from the cars
table with their
column names.
#!/usr/bin/python import psycopg2 con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') with con: cur = con.cursor() cur.execute('SELECT * FROM cars') col_names = [cn[0] for cn in cur.description] rows = cur.fetchall() print(f'{col_names[0]} {col_names[1]} {col_names[2]}')
We print the contents of the cars
table to the console.
Now, we include the names of the columns too.
col_names = [cn[0] for cn in cur.description]
We get the column names from the description
property
of the cursor object.
print(f'{col_names[0]} {col_names[1]} {col_names[2]}')
This line prints three column names of the cars
table.
We print the rows using the for loop. The data is aligned with the column names.
$ column_names.py id name price
In the following example we list all tables in the
testdb
database.
#!/usr/bin/python import psycopg2 con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') with con: cur = con.cursor() cur.execute("""SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'""") rows = cur.fetchall() for row in rows: print(row[0])
The code example prints all available tables in the current database to the terminal.
cur.execute("""SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'""")
The table names are stored inside the system information_schema
table.
$ list_tables.py cars countries projects employees users tasks images
These were the tables on our system.
Python psycopg2 export and import of data
We can export and import data using copy_to
and
copy_from
.
#!/usr/bin/python import psycopg2 import sys con = None fout = None try: con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') cur = con.cursor() fout = open('cars.csv', 'w') cur.copy_to(fout, 'cars', sep="|") except psycopg2.DatabaseError as e: print(f'Error {e}') sys.exit(1) except IOError as e: print(f'Error {e}') sys.exit(1) finally: if con: con.close() if fout: fout.close()
The code example copies data from the cars
table into the
cars.csv
file.
fout = open('cars.csv', 'w')
We open a file where we write the data from the cars
table.
cur.copy_to(fout, 'cars', sep="|")
The copy_to
method copies data from the cars
table
to the opened file. The columns are separated with the |
character.
$ cat cars.csv 2|Mercedes|57127 3|Skoda|9000 4|Volvo|29000 5|Bentley|350000 6|Citroen|21000 7|Hummer|41400 8|Volkswagen|21600 1|Audi|62300
These are the contents of the cars
file.
Now we are going to perform a reverse operation. We import the dumped table back into the database table.
testdb=> DELETE FROM cars; DELETE 8
We delete the data from the cars
table.
#!/usr/bin/python import psycopg2 import sys con = None f = None try: con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') cur = con.cursor() f = open('cars.csv', 'r') cur.copy_from(f, 'cars', sep="|") con.commit() except psycopg2.DatabaseError as e: if con: con.rollback() print(f'Error {e}') sys.exit(1) except IOError as e: if con: con.rollback() print(f'Error {e}') sys.exit(1) finally: if con: con.close() if f: f.close()
In the program we read the contents of the cars
file
and copy it back to the cars table.
f = open('cars.csv', 'r') cur.copy_from(f, 'cars', sep="|") con.commit()
We open the cars.csv
file for reading and copy the contents to the
cars
table. The changes are committed.
SELECT * FROM cars; id | name | price ----+------------+-------- 2 | Mercedes | 57127 3 | Skoda | 9000 4 | Volvo | 29000 5 | Bentley | 350000 6 | Citroen | 21000 7 | Hummer | 41400 8 | Volkswagen | 21600 1 | Audi | 62300 (8 rows)
The output shows that we have successfully
recreated the saved cars
table.
Python psycopg2 transactions
A transaction is an atomic unit of database operations against the data in one or more databases. The effects of all the SQL statements in a transaction can be either all committed to the database or all rolled back.
In psycopg2 module transactions are handled by the connection class. The first
command of a connection cursor starts a transaction. (We do not need to enclose
our SQL commands by BEGIN
and END
statements to create
a transaction. This is handled automatically by psycopg2
.) The
following commands are executed in the context of this new transaction. In case
of an error, the transaction is aborted and no further commands are executed
until the rollback
method.
The documentation to the psycopg2
module says that the connection
is responsible to terminate its transaction, calling either the
commit
or rollback
method. The committed changes are
immediately made persistent into the database. Closing the connection using the
close
method or destroying the connection object (using del or
letting it fall out of scope) will result in an implicit rollback
call.
The psycopg2
module also supports an autocommit mode,
where all changes to the tables are immediately effective.
To run in autocommit mode, we set the autocommit
property of the connection object to True
.
#!/usr/bin/python import psycopg2 import sys con = None try: con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') cur = con.cursor() cur.execute("DROP TABLE IF EXISTS friends") cur.execute("CREATE TABLE friends(id SERIAL PRIMARY KEY, name VARCHAR(255))") cur.execute("INSERT INTO friends(name) VALUES ('Tom')") cur.execute("INSERT INTO friends(name) VALUES ('Rebecca')") cur.execute("INSERT INTO friends(name) VALUES ('Jim')") cur.execute("INSERT INTO friends(name) VALUES ('Robert')") con.commit() except psycopg2.DatabaseError as e: if con: con.rollback() print('Error {e}') sys.exit(1) finally: if con: con.close()
We create the friends
table and try to fill it with data. However,
as we will see, the data will be not committed.
#con.commit()
The commit
method is commented. If we uncomment the
line, the data will be written to the table.
finally: if con: con.close()
The finally
block is always executed. If we have not committed the
changes and no error occurs (which would roll back the changes) the transaction
is still opened. The connection is closed with the close
method and
the transaction is terminated with an implicit call to the rollback
method.
testdb=# \dt List of relations Schema | Name | Type | Owner --------+-----------+-------+---------- public | cars | table | postgres public | countries | table | postgres public | employees | table | postgres public | images | table | postgres public | projects | table | postgres public | tasks | table | postgres public | users | table | postgres (7 rows)
Only after we have uncommented the line, the friends
table
is created.
Python psycopg2 autocommit
In the autocommit mode, an SQL statement is executed immediately.
#!/usr/bin/python import psycopg2 import sys con = None try: con = psycopg2.connect(database='testdb', user='postgres', password='s$cret') con.autocommit = True cur = con.cursor() cur.execute("DROP TABLE IF EXISTS friends") cur.execute("CREATE TABLE friends(id serial PRIMARY KEY, name VARCHAR(10))") cur.execute("INSERT INTO friends(name) VALUES ('Jane')") cur.execute("INSERT INTO friends(name) VALUES ('Tom')") cur.execute("INSERT INTO friends(name) VALUES ('Rebecca')") cur.execute("INSERT INTO friends(name) VALUES ('Jim')") cur.execute("INSERT INTO friends(name) VALUES ('Robert')") cur.execute("INSERT INTO friends(name) VALUES ('Patrick')") except psycopg2.DatabaseError as e: print(f'Error {e}') sys.exit(1) finally: if con: con.close()
In this example, we connect to the database in the autocommit mode.
We do not call neither commit
nor rollback
methods.
con.autocommit = True
We set the connection to the autocommit mode.
$ autocommit.py testdb=# select * from friends; id | name ----+--------- 1 | Jane 2 | Tom 3 | Rebecca 4 | Jim 5 | Robert 6 | Patrick (6 rows)
The data was successfully committed to the friends
table.
Source
In this article we showed how to program PostgreSQL databases in Python with psycopg2 module.
Author
List all Python tutorials.