Python Funcy
last modified February 15, 2025
In this article we show how to use the funcy
library in Python.
Funcy provides a collection of functional programming utilities that make it
easier to work with collections, dictionaries, and functions.
The funcy
library is particularly useful for tasks like filtering,
transforming, and combining data in a functional style.
Distinct
The following example demonstrates how to use the distinct
function
to remove duplicate elements from a list.
from funcy import distinct words = ['sky', 'war', 'water', 'war', 'sky', 'cup', 'cup', 'atom'] distilled = distinct(words) print(list(distilled))
In this program, the distinct
function is used to remove duplicate
elements from the words
list.
distilled = distinct(words)
The distinct
function returns an iterator of unique elements from
the input list.
$ python main.py ['sky', 'war', 'water', 'cup', 'atom']
Split
The following example demonstrates how to use the split
function to
divide a list into two parts based on a condition.
from funcy import split values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] evens, odds = split(lambda e: e % 2 == 0, values) print(list(evens)) print(list(odds))
In this program, the split
function is used to divide the
values
list into even and odd numbers.
evens, odds = split(lambda e: e % 2 == 0, values)
The split
function divides the list into two parts based on the
condition provided.
$ python main.py [2, 4, 6, 8, 10] [1, 3, 5, 7, 9]
Flatten
The following example demonstrates how to use the flatten
function
to flatten a nested list.
from funcy import flatten nested_list = [[1, 2], [3, 4], [5]] flat_list = flatten(nested_list) print(list(flat_list))
In this program, the flatten
function is used to flatten the
nested_list
into a single list.
flat_list = flatten(nested_list)
The flatten
function returns an iterator of elements from the
nested list.
$ python main.py [1, 2, 3, 4, 5]
Merge With
The following example demonstrates how to use the merge_with
function to merge multiple dictionaries and combine their values.
from funcy import merge_with # Sales data for different stores and online store1_sales = { 'Product A': 120, 'Product B': 80 } store2_sales = { 'Product A': 150, 'Product C': 60 } online_sales = { 'Product B': 110, 'Product C': 90 } # Merge sales data, summing up sales for each product total_sales = merge_with(sum, store1_sales, store2_sales, online_sales) print(total_sales)
In this program, the merge_with
function is used to merge multiple
dictionaries and sum their values.
total_sales = merge_with(sum, store1_sales, store2_sales, online_sales)
The merge_with
function merges the dictionaries and applies the
sum
function to combine values for the same keys.
$ python main.py {'Product A': 270, 'Product B': 190, 'Product C': 150}
Walk Values & Walk Keys
The following example demonstrates how to use the walk_values
and
walk_keys
functions to transform dictionary values and keys.
from funcy import walk_values, walk_keys # Sample data with inconsistent text cases data = { 'Name': 'Alice', 'Email': 'ALICE@EXAMPLE.COM', 'City': 'NeW YoRk' } # Normalize the text to lowercase normalized_values = walk_values(str.lower, data) print("Normalized values:", normalized_values) # Normalize the text to lowercase normalized_keys = walk_keys(str.lower, data) print("Normalized keys:", normalized_keys)
In this program, the walk_values
and walk_keys
functions are used to normalize dictionary values and keys to lowercase.
normalized_values = walk_values(str.lower, data)
The walk_values
function applies the str.lower
function to all values in the dictionary.
normalized_keys = walk_keys(str.lower, data)
The walk_keys
function applies the str.lower
function
to all keys in the dictionary.
$ python main.py Normalized values: {'Name': 'alice', 'Email': 'alice@example.com', 'City': 'new york'} Normalized keys: {'name': 'Alice', 'email': 'ALICE@EXAMPLE.COM', 'city': 'NeW YoRk'}
Split By
The following example demonstrates how to use the split_by
function
to split a list into two parts based on a condition.
from collections import namedtuple from funcy import split_by City = namedtuple('City' , 'id name population') c1 = City(1, 'Bratislava', 432000) c2 = City(2, 'Budapest', 1759000) c3 = City(3, 'Prague', 1280000) c4 = City(4, 'Warsaw', 1748000) c5 = City(5, 'Los Angeles', 3971000) c6 = City(6, 'Edinburgh', 464000) c7 = City(7, 'Presov', 82930) c8 = City(8, 'Kosice', 228000) c9 = City(9, 'Zilina', 81220) cities = [c1, c2, c3, c4, c5, c6, c7, c8, c9] cities.sort(key=lambda c: c.population) low_pop, high_pop = split_by(lambda c: c.population < 1000_000, cities) print(list(low_pop)) print(list(high_pop))
In this program, the split_by
function is used to split the
cities
list into two parts based on population.
low_pop, high_pop = split_by(lambda c: c.population < 1000_000, cities)
The split_by
function splits the list into two parts based on the condition provided.
$ python main.py [City(id=7, name='Presov', population=82930), City(id=9, name='Zilina', population=81220), City(id=8, name='Kosice', population=228000), City(id=6, name='Edinburgh', population=464000), City(id=1, name='Bratislava', population=432000)] [City(id=3, name='Prague', population=1280000), City(id=4, name='Warsaw', population=1748000), City(id=2, name='Budapest', population=1759000), City(id=5, name='Los Angeles', population=3971000)]
Select Keys & Select Values
The following example demonstrates how to use the select_keys
and
select_values
functions to filter dictionary keys and values.
from funcy import select_keys, select_values animals = {'donkeys': 3, 'horses': 2, 'chickens': 15, 'dogs': 2, 'cats': 5, 'elephants': 2} res = select_values(lambda e: e > 2, animals) print(res) res = select_keys(lambda e: e.startswith('do'), animals) print(res) res = {k: v for k, v in filter(lambda e: e[1] > 2, animals.items())} print(res) res = {k: v for k, v in filter( lambda e: e[0].startswith('do'), animals.items())} print(res)
In this program, the select_values
and select_keys
functions are used to filter dictionary values and keys.
res = select_values(lambda e: e > 2, animals)
The select_values
function filters dictionary values based on the
condition provided.
res = select_keys(lambda e: e.startswith('do'), animals)
The select_keys
function filters dictionary keys based on the
condition provided.
$ python main.py {'donkeys': 3, 'chickens': 15, 'cats': 5} {'donkeys': 3, 'dogs': 2} {'donkeys': 3, 'chickens': 15, 'cats': 5} {'donkeys': 3, 'dogs': 2}
Count By
The following example demonstrates how to use the count_by
function
to count occurrences of values in a list.
from dataclasses import dataclass from funcy import count_by @dataclass class User: name: str age: int occupation: str users = [ User(name='Alice', age=25, occupation='pilot'), User(name='Bob', age=30, occupation='driver'), User(name='Charlie', age=35, occupation='teacher'), User(name='David', age=40, occupation='teacher'), User(name='Paul', age=44, occupation='teacher'), User(name='Eva', age=25, occupation='driver'), User(name='Frank', age=30, occupation='teacher'), User(name='Mary', age=31, occupation='accountant') ] # Count users by age group occupation_counts = count_by(lambda user: user.occupation, users) print(dict(occupation_counts))
In this program, the count_by
function is used to count the number
of users in each occupation.
occupation_counts = count_by(lambda user: user.occupation, users)
The count_by
function counts occurrences of values based on the
function provided.
$ python main.py {'pilot': 1, 'driver': 2, 'teacher': 4, 'accountant': 1}
Function Composition
The following example demonstrates how to use the rcompose
and
compose
functions to compose multiple functions.
from funcy import rcompose, compose def square(x): return x * x def increment(x): return x + 1 def cube(x): return x * x * x val = 5 fchain = rcompose(square, increment, cube) print(fchain(val)) print(cube(increment(square(val)))) print('---------------------------------------------') fchain = compose(square, increment, cube) print(fchain(val)) print(square(increment(cube(val))))
In this program, the rcompose
and compose
functions
are used to compose multiple functions.
fchain = rcompose(square, increment, cube)
The rcompose
function composes functions in reverse order (right-to-left).
fchain = compose(square, increment, cube)
The compose
function composes functions in order (left-to-right).
$ python main.py 17576 17576 --------------------------------------------- 15876 15876
Source
In this article we have shown how to use the funcy
library for
functional programming tasks in Python.
Author
List all Python tutorials.