Python float Function
Last modified April 11, 2025
This comprehensive guide explores Python's float function, which
converts numbers and strings to floating-point values. We'll cover conversion
rules, string parsing, special values, and practical examples.
Basic Definitions
The float function creates a floating-point number from a number
or string. It implements Python's floating-point type which follows IEEE 754
standard for double precision (64-bit) numbers.
Key characteristics: converts integers, strings with decimal numbers,
scientific notation. Returns special values like inf and
nan for certain inputs. Default argument returns 0.0.
Basic Numeric Conversion
Here's simple usage showing how float converts different numeric
types and string representations to floating-point numbers.
# Convert integers
print(float(42))      # 42.0
print(float(-10))     # -10.0
# Convert numeric strings
print(float("3.14"))  # 3.14
print(float("-1.5"))  # -1.5
# Scientific notation
print(float("2.5e2")) # 250.0
This example shows float converting integers and strings. Integer
inputs gain a decimal point. String parsing handles signs and decimal points.
Scientific notation (e/E) is supported in strings. The exponent indicates power of 10 multiplication (e2 means ×10²).
Special Floating-Point Values
Python's float supports special values like infinity and NaN (Not a Number). This example demonstrates their creation and checking.
# Infinity
pos_inf = float("inf")
neg_inf = float("-inf")
print(pos_inf, neg_inf)  # inf -inf
# NaN (Not a Number)
nan = float("nan")
print(nan)  # nan
# Checking these values
import math
print(math.isinf(pos_inf))  # True
print(math.isnan(nan))     # True
Infinity values can be created with string "inf" or "-inf". NaN represents undefined numerical results like 0/0. These are IEEE 754 standard values.
The math module provides functions to check for these special
values, as direct equality comparisons with NaN are unreliable.
String Parsing and Locale Considerations
float has specific string parsing rules. This example shows valid
and invalid formats, including locale-dependent decimal points.
# Valid formats
print(float("3.14"))     # 3.14
print(float("  3.14  ")) # 3.14 (whitespace ignored)
print(float("3.14e-2"))  # 0.0314
# Invalid formats
try:
    float("3.14.15")     # Multiple decimal points
except ValueError as e:
    print(f"Error: {e}")
try:
    float("3,14")        # Comma as decimal (locale-dependent)
except ValueError as e:
    print(f"Error: {e}")
# Locale-aware conversion
import locale
locale.setlocale(locale.LC_NUMERIC, 'de_DE')
print(float("3,14"))     # Still fails - float() doesn't use locale
float only accepts period as decimal point, regardless of system
locale. For locale-specific parsing, additional processing is needed.
Whitespace around numbers is ignored. The function raises ValueError
for malformed strings or unsupported formats.
Error Handling and Default Values
This example demonstrates proper error handling when converting uncertain
inputs, and shows the default behavior of float.
# Default value
print(float())  # 0.0
# Conversion attempts with error handling
def safe_float(value, default=0.0):
    try:
        return float(value)
    except (ValueError, TypeError):
        return default
print(safe_float("3.14"))    # 3.14
print(safe_float("abc"))     # 0.0
print(safe_float(None))      # 0.0
print(safe_float("", 99.9))  # 99.9 (custom default)
The safe_float function demonstrates robust conversion that won't
raise exceptions. It returns a default value for unconvertible inputs.
Without arguments, float() returns 0.0. This is useful for
initializing variables or providing default numeric values.
Precision and Representation Issues
Floating-point numbers have inherent precision limitations. This example demonstrates common representation issues and how to handle them.
# Representation error
num = float("0.1") + float("0.2")
print(num)          # 0.30000000000000004
print(num == 0.3)   # False
# Exact decimal arithmetic
from decimal import Decimal
num = Decimal("0.1") + Decimal("0.2")
print(float(num))   # 0.3
# Large numbers lose precision
big = float("12345678901234567890")
print(big)          # 1.2345678901234567e+19
# Small numbers become zero
tiny = float("1e-324")
print(tiny)         # 0.0
Floating-point arithmetic can produce unexpected results due to binary representation. The decimal module provides exact decimal arithmetic.
Very large or small numbers may lose precision or underflow to zero. These are limitations of 64-bit floating-point representation.
Best Practices
- Use for conversion: Convert strings/numbers when float type needed
- Handle errors: Catch ValueError for string conversion attempts
- Consider alternatives: Use decimal for financial calculations
- Watch precision: Be aware of representation limitations
- Document assumptions: Note when float precision is sufficient
Source References
Author
List all Python tutorials.