Python dataclass decorator
last modified January 29, 2024
Python dataclass tutorial shows how to use dataclass decorators in Python in custom classes. The dataclass decorator helps reduce some boilerplate code.
Python dataclass decorator
The dataclass decorator is used to automatically generate special methods to classes,
including __str__ and __repr__. It helps reduce some boilerplate
code. The dataclass decorator is located in the dataclasses module.
The dataclass decorator examines the class to find fields. A field
is defined as class variable that has a type annotation.
@dataclass class Test: ... @dataclass() class Test: ... @dataclass(init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False) class Test: ...
These three declarations are equivalent. If no parameters are set in the
decorator, the default ones are used. If the init parameter is set
to True, the __init__ method will be generated. If
the class already defines the __init__, the parameter is ignored.
If the repr parameter is set to True, the
__repr__ method will be generated. If the class already defines
the __repr__, the parameter is ignored. If the eq
parameter is set to True, the __eq__ method will be
generated. If the class already defines __eq__, this parameter is
ignored.
If the order parameter is set to True, the
__lt__, __le__, __gt__, and
__ge__ methods are generated. If the class already defines
any of the methods, the ValueError is raised.
If the unsafe_hash is defined to False,
the __hash__ method is generated according
to how eq and frozen are set. If the frozen
parameter is set to True, the assignment to fields will generate an
exception.
Python regular custom class
In a regular custom Python class, we provide a constructor
and other methods such as __repr__ manually.
#!/usr/bin/python
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
def __repr__(self):
return f'Person{{name: {self.name}, age: {self.age}}}'
p = Person('John Doe', 34)
print(p)
The example shows a Person class with a constructor and
the __repr__ method, which gives a complete representation
of the object.
$ ./regular_class.py
Person{name: John Doe, age: 34}
Python dataclass example
The following example shows a simple usage of the
dataclass decorator.
#!/usr/bin/python
from dataclasses import dataclass
@dataclass
class Person:
name: str
age: int
p = Person('John Doe', 34)
print(p)
We have a class with two fields: name and str.
from dataclasses import dataclass
The dataclass decorator is located in the dataclasses
module.
@dataclass
class Person:
name: str
age: int
We apply the dataclass decorator on the Person
class.
p = Person('John Doe', 34)
print(p)
A new person object is created. Its __init__ method
is called, which is auto-generated by the dataclass decorator.
$ ./simple_dataclass.py Person(name='John Doe', age=34)
Python dataclass default values
It is possible to provide default values to the fields.
#!/usr/bin/python
from dataclasses import dataclass
@dataclass
class Person:
name: str = 'unknown'
age: int = 0
p = Person('John Doe', 34)
print(p)
p2 = Person()
print(p2)
In the example, the Person class has two fields; the
fields have some default values.
@dataclass
class Person:
name: str = 'unknown'
age: int = 0
With the assignment operator (=), we give the fields default values.
p2 = Person() print(p2)
When we do not provide values in the constructor, the fields will have default values.
$ ./default_values.py Person(name='John Doe', age=34) Person(name='unknown', age=0)
The dataclass frozen parameter
If the frozen parameter is set to True,
we cannot assign values to fields.
#!/usr/bin/python
from dataclasses import dataclass
@dataclass(frozen=True)
class Person:
name: str
age: int
p = Person('John Doe', 34)
p.occupation = 'gardener'
print(p)
print(p.occupation)
In the example, the frozen parameter is set
to True. The program fails with the following error
message: dataclasses.FrozenInstanceError: cannot assign to field 'occupation'.
The dataclass asdict function
The asdict function converts a dataclass instance to a
dict of its fields.
#!/usr/bin/python
from dataclasses import dataclass, asdict
@dataclass
class Person:
name: str
occupation: str
age: int
p = Person('John Doe', 'gardener', 34)
print(p)
print(asdict(p))
In the example, we print the fields of the Person class with
the help of the asdict function.
$ ./as_dict_fun.py
Person(name='John Doe', occupation='gardener', age=34)
{'name': 'John Doe', 'occupation': 'gardener', 'age': 34}
The first line is the output of the __repr__ method.
The second line is the dictionary of the fields.
The dataclass field function
With the field function, we can provide
some additional per-field information.
#!/usr/bin/python
from dataclasses import dataclass, field
@dataclass
class Person:
name: str
age: int
occupation: str = field(init=False, repr=False)
p = Person('John Doe', 34)
print(p)
p.occupation = "Gardener"
print(f'{p.name} is a {p.occupation}')
In the example, we have an additional occupation field.
occupation: str = field(init=False, repr=False)
The occupation field is not included in the __init__
and __repr__ methods.
$ ./fields.py Person(name='John Doe', age=34) John Doe is a Gardener
Python dataclass with pattern match
The next example uses a data class with pattern matching syntax.
#!/usr/bin/python
from dataclasses import dataclass
@dataclass
class Point:
x: int
y: int
def check(p):
match p:
case Point(x=0, y=0):
print("Origin")
case Point(x, y) if y == 0:
print(f"on x axis")
case Point(x, y) if x == 0:
print(f"on y axis")
case Point(x, y) if x > 0 and y > 0:
print("Q I")
case Point(x, y) if x < 0 and y > 0:
print("Q II")
case Point(x, y) if x < 0 and y < 0:
print("Q III")
case Point(x, y) if x > 0 and y < 0:
print("Q IV")
case _:
print("Not a point")
points = [Point(3, 0), Point(0, 0), Point(-4, -5), Point(-4, 0), Point(0, 5),
Point(4, 8), Point(-5, 3), Point(6, -4)]
for p in points:
check(p)
We have a list of Point objects. With match/case
keywords, we assign each point to the origin, x and y axis, or one of the
four quadrants.
case Point(x=0, y=0):
print("Origin")
In this case arm, we match against a point which has x=0 and y=0 coordinates.
case Point(x, y) if x > 0 and y > 0:
print("Q I")
Using guards, we check if the point lies in the first quadrant.
$ ./points.py on x axis Origin Q III on x axis on y axis Q I Q II Q IV
Source
Python data classes - language reference
In this article we have worked with Python dataclass decorators.
Author
List all Python tutorials.