Python anext Function
Last modified April 11, 2025
This comprehensive guide explores Python's anext
function, which
retrieves the next item from an asynchronous iterator. We'll cover async
iterators, error handling, and practical examples of asynchronous iteration.
Basic Definitions
The anext
function is the async equivalent of next
.
It retrieves the next item from an asynchronous iterator or returns a default
value if provided and iterator is exhausted.
Key characteristics: works with async iterators, must be awaited, raises
StopAsyncIteration
when exhausted (unless default is provided),
and was introduced in Python 3.10.
Basic Async Iterator Usage
Here's simple usage with an async iterator showing how anext
retrieves values from an asynchronous source.
import asyncio class AsyncCounter: def __init__(self, stop): self.current = 0 self.stop = stop def __aiter__(self): return self async def __anext__(self): if self.current >= self.stop: raise StopAsyncIteration await asyncio.sleep(0.1) self.current += 1 return self.current async def main(): counter = AsyncCounter(3) print(await anext(counter)) # 1 print(await anext(counter)) # 2 print(await anext(counter)) # 3 asyncio.run(main())
This example shows anext
with a custom async iterator. Each call
to anext
must be awaited and returns the next value from the
iterator.
The AsyncCounter
class implements the async iterator protocol
with __aiter__
and __anext__
methods. Note the
StopAsyncIteration
exception for signaling completion.
Using Default Value
anext
can accept a default value to return instead of raising
StopAsyncIteration
when the iterator is exhausted.
import asyncio async def async_gen(): yield "first" yield "second" async def main(): ag = async_gen() print(await anext(ag)) # 'first' print(await anext(ag)) # 'second' print(await anext(ag, "default")) # 'default' asyncio.run(main())
This example demonstrates the default value behavior. After yielding two
values, the async generator is exhausted. The third anext
call
returns the default instead of raising an exception.
This pattern is useful when you want to handle the end of iteration without
try/except blocks. The default can be any value, including None
.
Error Handling
This example shows proper error handling when using anext
with
async iterators.
import asyncio async def failing_async_gen(): yield 1 raise ValueError("Something went wrong") async def main(): ag = failing_async_gen() try: print(await anext(ag)) # 1 print(await anext(ag)) # Raises ValueError except ValueError as e: print(f"Caught error: {e}") # Exhausted iterator case ag = failing_async_gen() try: await anext(ag) await anext(ag) await anext(ag) # Would raise StopAsyncIteration except StopAsyncIteration: print("Iterator exhausted") asyncio.run(main())
These examples demonstrate error handling with anext
. The first
case shows handling a custom exception from the iterator. The second shows
catching StopAsyncIteration
.
Proper error handling is crucial when working with async iterators as they can raise both iteration-related and domain-specific exceptions.
With Async Generators
anext
works seamlessly with async generators, which are the most
common way to create async iterators.
import asyncio async def async_data_fetcher(): for i in range(3): await asyncio.sleep(0.1) yield f"data-{i}" async def main(): fetcher = async_data_fetcher() while True: try: data = await anext(fetcher) print(f"Received: {data}") except StopAsyncIteration: print("No more data") break asyncio.run(main())
This example shows anext
with an async generator function. The
generator yields values asynchronously, and anext
retrieves them
one by one.
The while-try-except pattern is common when consuming async iterators where you don't know the exact number of items in advance.
Real-world API Pagination
This example demonstrates a practical use case: paginating through an async
API using anext
.
import asyncio from typing import AsyncIterator, Dict, Any class AsyncAPIClient: def __init__(self): self.page = 0 async def fetch_page(self) -> Dict[str, Any]: self.page += 1 if self.page > 3: return {"items": [], "has_more": False} await asyncio.sleep(0.2) return { "items": [f"item-{self.page}-{i}" for i in range(2)], "has_more": self.page < 3 } def __aiter__(self) -> AsyncIterator[str]: return self async def __anext__(self) -> str: if not hasattr(self, "_current_page"): self._current_page = await self.fetch_page() self._items_iter = iter(self._current_page["items"]) try: return next(self._items_iter) except StopIteration: if not self._current_page["has_more"]: raise StopAsyncIteration self._current_page = await self.fetch_page() self._items_iter = iter(self._current_page["items"]) return await self.__anext__() async def main(): client = AsyncAPIClient() try: while True: item = await anext(client) print(f"Processing: {item}") except StopAsyncIteration: print("All items processed") asyncio.run(main())
This example implements pagination through an async API. The AsyncAPIClient
fetches pages of data and yields individual items. anext
handles
the iteration through both page items and page transitions.
The implementation shows how to manage complex async iteration state while
providing a simple interface to consumers via anext
.
Best Practices
- Always await: Remember
anext
is a coroutine and must be awaited - Handle StopAsyncIteration: Either catch it or use a default value
- Prefer async for: Use
async for
loops when possible instead of manualanext
calls - Document behavior: Clearly document your async iterators' behavior
- Consider timeouts: For network operations, consider adding timeout handling
Source References
Author
List all Python tutorials.