Python aiter Function
Last modified April 11, 2025
This comprehensive guide explores Python's aiter
function, which
returns an asynchronous iterator for asynchronous iteration. We'll cover basic
usage, custom async iterators, and practical examples.
Basic Definitions
The aiter
function returns an asynchronous iterator object. It is
the async equivalent of the built-in iter
function. Introduced in
Python 3.10, it works with objects implementing __aiter__
.
Key characteristics: used in async for loops, requires an async iterable,
returns an async iterator. It is typically used with anext
for
asynchronous iteration.
Basic Async Iteration
Here's simple usage with an async generator showing how aiter
works with basic async iteration.
async def async_gen(): for i in range(3): yield i await asyncio.sleep(0.1) async def main(): ag = async_gen() ait = aiter(ag) while True: try: val = await anext(ait) print(val) except StopAsyncIteration: break asyncio.run(main())
This example shows basic async iteration. The async_gen
produces
values asynchronously. aiter
gets the async iterator, and
anext
retrieves values.
The loop continues until StopAsyncIteration
is raised, similar to
regular iteration but with async/await syntax.
Custom Async Iterator
You can create custom async iterators by implementing __aiter__
.
This example shows a simple async counter.
class AsyncCounter: def __init__(self, stop): self.stop = stop self.current = 0 def __aiter__(self): return self async def __anext__(self): if self.current >= self.stop: raise StopAsyncIteration await asyncio.sleep(0.1) self.current += 1 return self.current - 1 async def main(): async for i in AsyncCounter(3): print(i) asyncio.run(main())
The AsyncCounter
class implements __aiter__
and
__anext__
to support async iteration. aiter
would
return this object when called.
This pattern is useful when you need more control over async iteration than async generators provide.
Async Iterable Protocol
This example demonstrates the full async iterable protocol with separate iterator and iterable classes.
class AsyncIterable: def __init__(self, data): self.data = data def __aiter__(self): return AsyncIterator(self.data) class AsyncIterator: def __init__(self, data): self.data = data self.index = 0 async def __anext__(self): if self.index >= len(self.data): raise StopAsyncIteration await asyncio.sleep(0.1) item = self.data[self.index] self.index += 1 return item async def main(): ait = aiter(AsyncIterable([1, 2, 3])) print(await anext(ait)) # 1 print(await anext(ait)) # 2 print(await anext(ait)) # 3 asyncio.run(main())
This shows the complete protocol with separate iterable and iterator classes.
The AsyncIterable
returns a new AsyncIterator
.
This separation allows multiple independent iterations over the same data, similar to how regular iterables work.
Error Handling
The aiter
function raises TypeError
when used with
non-async iterables. This example shows proper error handling.
async def main(): try: ait = aiter([1, 2, 3]) # Regular list is not async iterable except TypeError as e: print(f"Error: {e}") # 'list' object is not async iterable class NoAiter: pass try: ait = aiter(NoAiter()) except TypeError as e: print(f"Error: {e}") # 'NoAiter' object is not async iterable asyncio.run(main())
These examples demonstrate aiter
's behavior with invalid types.
Regular iterables and objects without __aiter__
raise errors.
To make a class work with aiter
, implement __aiter__
as shown in previous examples.
Practical Example: Async Data Fetch
This example shows a practical use case for aiter
with async
data fetching from multiple sources.
async def fetch_data(url): # Simulate network request await asyncio.sleep(0.2) return f"Data from {url}" class AsyncDataFetcher: def __init__(self, urls): self.urls = urls def __aiter__(self): self.index = 0 return self async def __anext__(self): if self.index >= len(self.urls): raise StopAsyncIteration url = self.urls[self.index] self.index += 1 return await fetch_data(url) async def main(): fetcher = AsyncDataFetcher([ "api.example.com/1", "api.example.com/2", "api.example.com/3" ]) async for data in fetcher: print(data) asyncio.run(main())
This demonstrates a real-world use case where aiter
enables
asynchronous data processing. The fetcher retrieves data from URLs one by one.
The async iteration pattern allows efficient I/O-bound operations without blocking the event loop.
Best Practices
- Use for async iteration: Prefer
aiter
over manual async iteration - Implement __aiter__: For custom async iterable types
- Separate iterable/iterator: For multiple independent iterations
- Handle errors: Catch TypeError when input type is uncertain
- Use async generators: For simple cases when possible
Source References
Author
List all Python tutorials.