Polars Windowing Functions
last modified March 1, 2025
Polars is a fast, efficient DataFrame library in Python. Windowing functions are used for analyzing data within a sliding or expanding window. This tutorial covers how to use windowing functions in Polars, with practical examples.
Windowing functions are useful for time series analysis, moving averages, and
cumulative calculations. Polars provides methods like rolling
and
over
for these tasks.
Rolling Window: Moving Average
This example shows how to calculate a moving average using a rolling window.
import polars as pl data = { 'Date': pl.date_range(start='2023-01-01', end='2023-01-10', interval='1d'), 'Values': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] } df = pl.DataFrame(data) df = df.with_column( pl.col('Values').rolling_mean(window_size=3).alias('MovingAvg') ) print(df)
The rolling_mean(window_size=3)
calculates a 3-day moving average
for the 'Values' column. This is useful for smoothing time series data.
Rolling Window: Minimum and Maximum
This example demonstrates calculating rolling minimum and maximum values.
import polars as pl data = { 'Date': pl.date_range(start='2023-01-01', end='2023-01-10', interval='1d'), 'Values': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] } df = pl.DataFrame(data) df = df.with_columns([ pl.col('Values').rolling_min(window_size=3).alias('RollingMin'), pl.col('Values').rolling_max(window_size=3).alias('RollingMax') ]) print(df)
The rolling_min(window_size=3)
and rolling_max(window_size=3)
calculate the rolling minimum and maximum values, respectively. This is useful
for identifying trends.
Expanding Window: Cumulative Sum
This example shows how to calculate a cumulative sum using an expanding window.
import polars as pl data = { 'Date': pl.date_range(start='2023-01-01', end='2023-01-10', interval='1d'), 'Values': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] } df = pl.DataFrame(data) df = df.with_column( pl.col('Values').cumsum().alias('CumulativeSum') ) print(df)
The cumsum
calculates the cumulative sum of the 'Values' column.
This is useful for tracking cumulative totals.
Expanding Window: Cumulative Average
This example demonstrates calculating a cumulative average using an expanding window.
import polars as pl data = { 'Date': pl.date_range(start='2023-01-01', end='2023-01-10', interval='1d'), 'Values': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] } df = pl.DataFrame(data) df = df.with_column( pl.col('Values').cummean().alias('CumulativeAvg') ) print(df)
The cummean
calculates the cumulative average of the 'Values'
column. This is useful for analyzing trends over time.
Rolling Window with Custom Function
This example shows how to apply a custom function to a rolling window.
import polars as pl data = { 'Date': pl.date_range(start='2023-01-01', end='2023-01-10', interval='1d'), 'Values': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] } df = pl.DataFrame(data) def custom_agg(x): return x.max() - x.min() df = df.with_column( pl.col('Values').rolling_apply(window_size=3, function=custom_agg).alias('RollingRange') ) print(df)
The rolling_apply(window_size=3, function=custom_agg)
applies a
custom function to calculate the range (max - min) within each rolling window.
This is useful for custom calculations.
Rolling Window with Center Alignment
This example demonstrates using a rolling window with center alignment.
import polars as pl data = { 'Date': pl.date_range(start='2023-01-01', end='2023-01-10', interval='1d'), 'Values': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] } df = pl.DataFrame(data) df = df.with_column( pl.col('Values').rolling_mean(window_size=3, center=True).alias('RollingAvgCenter') ) print(df)
The rolling_mean(window_size=3, center=True)
calculates a rolling
average with the window centered on each point. This is useful for symmetric
analysis.
Rolling Window with Minimum Periods
This example shows how to use a rolling window with a minimum number of periods.
import polars as pl data = { 'Date': pl.date_range(start='2023-01-01', end='2023-01-10', interval='1d'), 'Values': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] } df = pl.DataFrame(data) df = df.with_column( pl.col('Values').rolling_mean(window_size=3, min_periods=1).alias('RollingAvgMinPeriods') ) print(df)
The rolling_mean(window_size=3, min_periods=1)
calculates a rolling
average even if fewer than 3 values are available. This is useful for handling
edge cases.
Best Practices for Windowing Functions
- Understand Data: Analyze data structure before applying windowing functions.
- Choose Appropriate Window Size: Select a window size that aligns with your analysis goals.
- Handle Edge Cases: Use
min_periods
to handle incomplete windows. - Validate Results: Check windowed data for accuracy and consistency.
Source
In this article, we have explored how to use windowing functions in Polars.
Author
List all Polars tutorials.