Pandas Formatting Columns
last modified March 1, 2025
Pandas is a powerful Python library for data manipulation. Formatting columns is a common task when working with DataFrames. This tutorial covers how to format columns using Pandas, with practical examples.
Formatting columns can improve readability and presentation. Pandas provides
methods like apply
, map
, and style
to
format columns. These methods are flexible and allow for custom formatting.
Formatting Numbers as Currency
This example shows how to format numbers as currency.
import pandas as pd data = { 'Product': ['A', 'B', 'C'], 'Price': [100.5, 200.75, 300.25] } df = pd.DataFrame(data) df['Price'] = df['Price'].map('${:,.2f}'.format) print(df)
The map('${:,.2f}'.format)
method formats the 'Price' column as
currency with two decimal places. This is useful for financial data.
Formatting Dates
This example demonstrates formatting date columns.
import pandas as pd data = { 'Event': ['Meeting', 'Conference', 'Workshop'], 'Date': ['2023-10-01', '2023-11-15', '2023-12-20'] } df = pd.DataFrame(data) df['Date'] = pd.to_datetime(df['Date']).dt.strftime('%d-%m-%Y') print(df)
The dt.strftime('%d-%m-%Y')
method formats the 'Date' column as
'DD-MM-YYYY'. This is useful for standardizing date formats.
Formatting Percentages
This example shows how to format numbers as percentages.
import pandas as pd data = { 'Category': ['A', 'B', 'C'], 'Growth': [0.15, 0.25, 0.35] } df = pd.DataFrame(data) df['Growth'] = df['Growth'].map('{:.2%}'.format) print(df)
The map('{:.2%}'.format)
method formats the 'Growth' column as
percentages with two decimal places. This is useful for growth metrics.
Formatting Large Numbers
This example demonstrates formatting large numbers with commas.
import pandas as pd data = { 'City': ['New York', 'Los Angeles', 'Chicago'], 'Population': [8419000, 3971000, 2716000] } df = pd.DataFrame(data) df['Population'] = df['Population'].map('{:,}'.format) print(df)
The map('{:,}'.format)
method formats the 'Population' column with
commas as thousand separators. This improves readability for large numbers.
Formatting Text as Uppercase
This example shows how to format text columns as uppercase.
import pandas as pd data = { 'Name': ['Alice', 'Bob', 'Charlie'], 'Role': ['Manager', 'Developer', 'Designer'] } df = pd.DataFrame(data) df['Role'] = df['Role'].str.upper() print(df)
The str.upper
method converts the 'Role' column to uppercase. This
is useful for standardizing text data.
Formatting with Conditional Styling
This example demonstrates conditional formatting using the style
API.
import pandas as pd data = { 'Product': ['A', 'B', 'C'], 'Sales': [1000, 1500, 800] } df = pd.DataFrame(data) def highlight_low_sales(val): color = 'red' if val < 1000 else 'black' return f'color: {color}' styled_df = df.style.applymap(highlight_low_sales, subset=['Sales']) print(styled_df)
The style.applymap
method applies conditional formatting to the
'Sales' column. Sales below 1000 are highlighted in red. This is useful for
visualizing data.
Formatting with Custom Functions
This example shows how to use custom functions for formatting.
import pandas as pd data = { 'Product': ['A', 'B', 'C'], 'Price': [100.5, 200.75, 300.25] } df = pd.DataFrame(data) def format_price(price): return f'Price: ${price:.2f}' df['Price'] = df['Price'].apply(format_price) print(df)
The apply(format_price)
method applies a custom function to format
the 'Price' column. This allows for flexible and reusable formatting.
Best Practices for Formatting Columns
- Understand Data: Analyze data types and requirements before formatting.
- Use Appropriate Methods: Choose methods like
map
,apply
, orstyle
based on needs. - Preserve Data Integrity: Ensure formatting does not alter underlying data.
- Validate Results: Check formatted data for consistency and accuracy.
Source
In this article, we have explored how to format columns in Pandas DataFrames.
Author
List all Pandas tutorials.