Matplotlib Subplots
last modified February 25, 2025
Matplotlib is a powerful Python library for creating static, animated, and interactive visualizations. Subplots allow you to display multiple plots in a single figure. This tutorial covers how to create and customize subplots using Matplotlib.
Subplots are ideal for comparing multiple datasets or visualizing different aspects of the same dataset. Matplotlib provides a flexible and easy-to-use interface for creating subplots with customizations.
Basic Subplots
This example demonstrates how to create a basic 2x2 grid of subplots.
import matplotlib.pyplot as plt import numpy as np # Data x = np.linspace(0, 10, 100) # Create a 2x2 grid of subplots fig, axs = plt.subplots(2, 2) # Plot data in each subplot axs[0, 0].plot(x, np.sin(x)) axs[0, 0].set_title("Sine Wave") axs[0, 1].plot(x, np.cos(x)) axs[0, 1].set_title("Cosine Wave") axs[1, 0].plot(x, np.tan(x)) axs[1, 0].set_title("Tangent Wave") axs[1, 1].plot(x, np.exp(x)) axs[1, 1].set_title("Exponential Curve") # Adjust layout plt.tight_layout() # Display the figure plt.show()
The code example uses the matplotlib.pyplot
library to create a 2x2
grid of subplots displaying different mathematical functions. First, it
generates 100 evenly spaced points between 0 and 10 using
numpy.linspace
.
It then creates a figure with four subplots (axs
) and plots a sine
wave, cosine wave, tangent wave, and exponential curve on each of the subplots,
respectively, while also adding titles to each plot. Finally, it adjusts the
layout of the figure to ensure the plots do not overlap and displays the figure
using plt.show
.
Customizing Subplots
This example demonstrates how to customize subplots with shared axes, titles, and labels.
import matplotlib.pyplot as plt import numpy as np # Data x = np.linspace(0, 10, 100) # Create a 2x1 grid of subplots with shared X-axis fig, axs = plt.subplots(2, 1, sharex=True) # Plot data in each subplot axs[0].plot(x, np.sin(x), color="blue") axs[0].set_title("Sine Wave") axs[0].set_ylabel("Amplitude") axs[1].plot(x, np.cos(x), color="red") axs[1].set_title("Cosine Wave") axs[1].set_xlabel("X-axis") axs[1].set_ylabel("Amplitude") # Adjust layout plt.tight_layout() # Display the figure plt.show()
The sharex=True
parameter ensures that the subplots share the same
X-axis. Titles and labels are added using set_title
,
set_xlabel
, and set_ylabel
.
Uneven Subplots
This example demonstrates how to create subplots with uneven layouts using
GridSpec
.
import matplotlib.pyplot as plt import numpy as np from matplotlib.gridspec import GridSpec # Data x = np.linspace(0, 10, 100) # Create a figure with uneven subplots fig = plt.figure() gs = GridSpec(2, 2, figure=fig) # Create subplots ax1 = fig.add_subplot(gs[0, :]) # Top row, full width ax2 = fig.add_subplot(gs[1, 0]) # Bottom left ax3 = fig.add_subplot(gs[1, 1]) # Bottom right # Plot data in each subplot ax1.plot(x, np.sin(x)) ax1.set_title("Sine Wave") ax2.plot(x, np.cos(x)) ax2.set_title("Cosine Wave") ax3.plot(x, np.tan(x)) ax3.set_title("Tangent Wave") # Adjust layout plt.tight_layout() # Display the figure plt.show()
The example creates a figure with three subplots arranged unevenly using
the GridSpec
module from Matplotlib. The top row subplot spans the
full width of the figure and displays a sine wave, labeled "Sine Wave." The
bottom row contains two subplots: the left subplot shows a cosine wave, labeled
"Cosine Wave," while the right subplot displays a tangent wave, labeled "Tangent Wave."
The tight_layout
function is used to adjust the spacing
between subplots for a cleaner appearance. The resulting figure visually
represents the mathematical functions sine, cosine, and tangent across the
x-axis ranging from 0 to 10.
Subplots with Different Sizes
This example demonstrates how to create subplots with different sizes using
subplot2grid
.
import matplotlib.pyplot as plt import numpy as np # Data x = np.linspace(0, 10, 100) # Create a figure with subplots of different sizes plt.figure() # First subplot (large) ax1 = plt.subplot2grid((3, 3), (0, 0), colspan=3) ax1.plot(x, np.sin(x)) ax1.set_title("Sine Wave") # Second subplot (small) ax2 = plt.subplot2grid((3, 3), (1, 0), colspan=2) ax2.plot(x, np.cos(x)) ax2.set_title("Cosine Wave") # Third subplot (small) ax3 = plt.subplot2grid((3, 3), (1, 2), rowspan=2) ax3.plot(x, np.tan(x)) ax3.set_title("Tangent Wave") # Fourth subplot (small) ax4 = plt.subplot2grid((3, 3), (2, 0)) ax4.plot(x, np.exp(x)) ax4.set_title("Exponential Curve") # Fifth subplot (small) ax5 = plt.subplot2grid((3, 3), (2, 1)) ax5.plot(x, np.log(x + 1)) ax5.set_title("Logarithmic Curve") # Adjust layout plt.tight_layout() # Display the figure plt.show()
The subplot2grid
function allows for subplots of different sizes by
specifying the grid layout and the position of each subplot.
Subplots with Labels and Titles
This example demonstrates how to create a grid of subplots with labels and titles.
import matplotlib.pyplot as plt import numpy as np fig, axs = plt.subplots(3, 3, figsize=(15, 8), sharex=True, sharey=True) for i, ax in enumerate(axs.flat): ax.scatter(*np.random.normal(size=(2, 200))) ax.set_title(f'Title {i+1}') # Set labels plt.setp(axs[-1, :], xlabel='x axis label') plt.setp(axs[:, 0], ylabel='y axis label') plt.savefig('subplots.png')
The plt.setp
function is used to set labels for the X and Y axes
of the subplots. Each subplot is given a unique title.
Sharing X Axis
This example demonstrates how to create subplots that share the X axis.
import matplotlib.pyplot as plt data = {'FreeBSD': 4, 'NetBSD': 1, 'Linux': 12, 'Windows': 6, 'Apple': 2} keys = list(data.keys()) vals = list(data.values()) fig, axs = plt.subplots(3, 1, figsize=(4, 10), sharex=True) axs[0].bar(keys, vals) axs[1].scatter(keys, vals) axs[2].plot(keys, vals) fig.suptitle('Operating systems in lab') plt.savefig('subplots.png')
The sharex=True
parameter ensures that all subplots share the same
X axis. The fig.suptitle
function adds a title to the entire
figure.
Creating Each Subplot Separately
This example demonstrates how to create each subplot separately using the
subplot
function.
import matplotlib.pyplot as plt import numpy as np x = np.array([0, 1, 2, 3]) y = np.array([6, 8, 2, 11]) plt.subplot(2, 3, 1) plt.plot(x, y) x = np.array([0, 1, 2, 3]) y = np.array([15, 25, 35, 45]) plt.suptitle('Subplots') plt.subplot(2, 3, 2) plt.plot(x, y) x = np.array([0, 1, 2, 3]) y = np.array([2, 9, 11, 11]) plt.subplot(2, 3, 3) plt.plot(x, y) x = np.array([0, 1, 2, 3]) y = np.array([11, 22, 33, 55]) plt.subplot(2, 3, 4) plt.plot(x, y) x = np.array([0, 1, 2, 3]) y = np.array([13, 18, 11, 10]) plt.subplot(2, 3, 5) plt.plot(x, y) x = np.array([0, 1, 2, 3]) y = np.array([10, 20, 30, 40]) plt.subplot(2, 3, 6) plt.plot(x, y) plt.savefig('subplots2.png')
The subplot
function is used to create each subplot individually.
The suptitle
function adds a title to the entire figure.
Best Practices for Subplots
- Use
tight_layout
: This ensures that subplots do not overlap. - Share Axes When Appropriate: Use
sharex
orsharey
to align axes for better comparison. - Label Subplots Clearly: Add titles and axis labels to make each subplot understandable.
- Use GridSpec for Complex Layouts: For uneven or complex layouts, use
GridSpec
orsubplot2grid
.
Source
Matplotlib Subplots Documentation
In this article, we have explored how to create and customize subplots using Matplotlib, including basic subplots, shared axes, uneven layouts, and different-sized subplots.
Author
List all Python tutorials.