ZetCode

Matplotlib Bar Charts

last modified February 25, 2025

Matplotlib is a powerful Python library for creating static, animated, and interactive visualizations. Bar charts are one of the most common types of charts used to compare categorical data. This tutorial covers how to create various types of bar charts using Matplotlib.

Bar charts are ideal for visualizing discrete data, such as counts or percentages across categories. Matplotlib provides a flexible and easy-to-use interface for creating bar charts with customizations.

Basic Bar Chart

This example demonstrates how to create a basic bar chart.

basic_bar_chart.py
import matplotlib.pyplot as plt

# Data
categories = ['A', 'B', 'C', 'D']
values = [10, 20, 15, 25]

# Create a bar chart
plt.bar(categories, values)

# Add labels and title
plt.xlabel("Categories")
plt.ylabel("Values")
plt.title("Basic Bar Chart")

# Display the chart
plt.show()

The plt.bar() function is used to create a bar chart. The plt.show() function displays the chart.

Horizontal Bar Chart

This example shows how to create a horizontal bar chart.

horizontal_bar_chart.py
import matplotlib.pyplot as plt

# Data
categories = ['A', 'B', 'C', 'D']
values = [10, 20, 15, 25]

# Create a horizontal bar chart
plt.barh(categories, values)

# Add labels and title
plt.xlabel("Values")
plt.ylabel("Categories")
plt.title("Horizontal Bar Chart")

# Display the chart
plt.show()

The plt.barh() function is used to create a horizontal bar chart.

Grouped Bar Chart

This example demonstrates how to create a grouped bar chart.

grouped_bar_chart.py
import matplotlib.pyplot as plt
import numpy as np

# Data
categories = ['A', 'B', 'C', 'D']
values1 = [10, 20, 15, 25]
values2 = [15, 25, 20, 30]

# Set the width of the bars
bar_width = 0.35

# Create positions for the bars
x = np.arange(len(categories))

# Create grouped bars
plt.bar(x - bar_width/2, values1, width=bar_width, label="Group 1")
plt.bar(x + bar_width/2, values2, width=bar_width, label="Group 2")

# Add labels, title, and legend
plt.xlabel("Categories")
plt.ylabel("Values")
plt.title("Grouped Bar Chart")
plt.xticks(x, categories)
plt.legend()

# Display the chart
plt.show()

The np.arange() function is used to create positions for the bars. The width parameter controls the width of the bars.

Stacked Bar Chart

This example shows how to create a stacked bar chart.

stacked_bar_chart.py
import matplotlib.pyplot as plt

# Data
categories = ['A', 'B', 'C', 'D']
values1 = [10, 20, 15, 25]
values2 = [15, 25, 20, 30]

# Create stacked bars
plt.bar(categories, values1, label="Group 1")
plt.bar(categories, values2, bottom=values1, label="Group 2")

# Add labels, title, and legend
plt.xlabel("Categories")
plt.ylabel("Values")
plt.title("Stacked Bar Chart")
plt.legend()

# Display the chart
plt.show()

The bottom parameter is used to stack the second group of bars on top of the first group.

Customizing Bar Charts

This example demonstrates how to customize bar charts with colors, edge colors, and patterns.

custom_bar_chart.py
import matplotlib.pyplot as plt

# Data
categories = ['A', 'B', 'C', 'D']
values = [10, 20, 15, 25]

# Create a bar chart with custom styles
plt.bar(categories, values, color="skyblue", edgecolor="black", hatch="/")

# Add labels and title
plt.xlabel("Categories")
plt.ylabel("Values")
plt.title("Custom Bar Chart")

# Display the chart
plt.show()

The color, edgecolor, and hatch parameters are used to customize the appearance of the bars.

Best Practices for Bar Charts

Source

Matplotlib Bar Chart Documentation

In this article, we have explored various types of bar charts using Matplotlib, including basic, horizontal, grouped, stacked, and custom bar charts.

Author

My name is Jan Bodnar, and I am a passionate programmer with extensive programming experience. I have been writing programming articles since 2007. To date, I have authored over 1,400 articles and 8 e-books. I possess more than ten years of experience in teaching programming.

List all Python tutorials.