Java Double Class
Last modified: April 13, 2025
The java.lang.Double
class wraps a value of primitive type
double
in an object. It provides methods for converting a
double
to a String
and vice versa.
The Double class contains constants and methods useful for working with double-precision floating-point numbers. It also provides methods for comparing Double objects and converting between different numeric representations.
Double Class Methods
The Double class provides several methods for working with double values.
Key methods include parseDouble
, valueOf
,
doubleValue
, compare
, and isNaN
.
public final class Double extends Number implements Comparable<Double> { public static final double POSITIVE_INFINITY = 1.0 / 0.0; public static final double NEGATIVE_INFINITY = -1.0 / 0.0; public static final double NaN = 0.0d / 0.0; public static final double MAX_VALUE = 1.7976931348623157e+308; public static final double MIN_VALUE = 4.9e-324; public static double parseDouble(String s) throws NumberFormatException {...} public static Double valueOf(String s) throws NumberFormatException {...} public static Double valueOf(double d) {...} public double doubleValue() {...} public static int compare(double d1, double d2) {...} public static boolean isNaN(double v) {...} public static boolean isInfinite(double v) {...} }
The code above shows key constants and methods provided by the Double class. These methods allow for parsing, comparing, and converting double values.
Creating Double Objects
Double objects can be created using constructors or static factory methods.
The valueOf
method is preferred over constructors as it may
cache frequently requested values.
package com.zetcode; public class Main { public static void main(String[] args) { // Using constructor (deprecated in Java 9) Double d1 = new Double(3.14159); // Using valueOf method (preferred) Double d2 = Double.valueOf(3.14159); Double d3 = Double.valueOf("3.14159"); // Using autoboxing Double d4 = 3.14159; System.out.println("d1: " + d1); System.out.println("d2: " + d2); System.out.println("d3: " + d3); System.out.println("d4: " + d4); // Converting back to primitive double primitive = d1.doubleValue(); System.out.println("Primitive value: " + primitive); } }
This example demonstrates different ways to create Double objects. The
valueOf
method is preferred over constructors. Autoboxing
automatically converts primitive doubles to Double objects when needed.
Parsing Double Values
The parseDouble
method converts a string to a primitive double.
The valueOf
method converts a string to a Double object. Both
throw NumberFormatException
for invalid input.
package com.zetcode; public class Main { public static void main(String[] args) { String numStr1 = "3.14159"; String numStr2 = "-123.456"; String invalidStr = "3.14.159"; // Parsing to primitive double double d1 = Double.parseDouble(numStr1); double d2 = Double.parseDouble(numStr2); // Parsing to Double object Double dObj1 = Double.valueOf(numStr1); Double dObj2 = Double.valueOf(numStr2); System.out.println("d1: " + d1); System.out.println("d2: " + d2); System.out.println("dObj1: " + dObj1); System.out.println("dObj2: " + dObj2); try { double invalid = Double.parseDouble(invalidStr); } catch (NumberFormatException e) { System.out.println("Invalid number format: " + invalidStr); } } }
This example shows how to parse strings into double values. The
parseDouble
returns a primitive, while valueOf
returns a Double object. Both methods throw exceptions for malformed input.
Special Double Values
Double class provides constants for special floating-point values like NaN,
positive infinity, and negative infinity. The isNaN
and
isInfinite
methods check for these special values.
package com.zetcode; public class Main { public static void main(String[] args) { double nanValue = Double.NaN; double posInf = Double.POSITIVE_INFINITY; double negInf = Double.NEGATIVE_INFINITY; System.out.println("NaN: " + nanValue); System.out.println("Positive Infinity: " + posInf); System.out.println("Negative Infinity: " + negInf); System.out.println("Is NaN? " + Double.isNaN(nanValue)); System.out.println("Is Infinity? " + Double.isInfinite(posInf)); // Operations with special values System.out.println("NaN + 1: " + (nanValue + 1)); System.out.println("Infinity * 2: " + (posInf * 2)); System.out.println("Infinity / Infinity: " + (posInf / posInf)); } }
This example demonstrates special double values and how to check for them. NaN (Not a Number) results from invalid operations like 0/0. Infinity values result from operations like division by zero. Special values propagate through arithmetic operations.
Comparing Double Values
Comparing double values requires special care due to floating-point precision.
The compare
and compareTo
methods properly handle
NaN and infinity values. For equality comparisons, consider using a tolerance.
package com.zetcode; public class Main { public static void main(String[] args) { Double d1 = 1.23456; Double d2 = 1.23457; Double d3 = Double.NaN; Double d4 = Double.POSITIVE_INFINITY; // Using compare method System.out.println("d1 compareTo d2: " + d1.compareTo(d2)); System.out.println("d3 compareTo d1: " + d3.compareTo(d1)); System.out.println("d4 compareTo d1: " + d4.compareTo(d1)); // Using static compare method System.out.println("Compare d1 and d2: " + Double.compare(d1, d2)); // Equality comparison with tolerance double tolerance = 0.0001; boolean nearlyEqual = Math.abs(d1 - d2) < tolerance; System.out.println("d1 nearly equals d2: " + nearlyEqual); } }
This example shows proper ways to compare Double values. The compare
methods handle special values correctly. For approximate equality, use a
tolerance value to account for floating-point precision limitations.
Converting Double Values
The Double class provides methods to convert between double and other primitive
types. These include intValue
, longValue
, and
floatValue
. Be aware of potential precision loss during conversion.
package com.zetcode; public class Main { public static void main(String[] args) { Double d = 123.456789; // Converting to other primitive types int intVal = d.intValue(); long longVal = d.longValue(); float floatVal = d.floatValue(); byte byteVal = d.byteValue(); short shortVal = d.shortValue(); System.out.println("Original double: " + d); System.out.println("intValue: " + intVal); System.out.println("longValue: " + longVal); System.out.println("floatValue: " + floatVal); System.out.println("byteValue: " + byteVal); System.out.println("shortValue: " + shortVal); // Converting to String String strVal = d.toString(); String hexStr = Double.toHexString(d); System.out.println("toString: " + strVal); System.out.println("toHexString: " + hexStr); } }
This example demonstrates converting Double values to other primitive types.
Note that converting to integer types truncates the fractional part. The
toHexString
method provides a hexadecimal floating-point
representation.
Double Constants and Limits
The Double class provides useful constants that represent the limits of
double-precision floating-point numbers. These include MAX_VALUE
,
MIN_VALUE
, and MAX_EXPONENT
.
package com.zetcode; public class Main { public static void main(String[] args) { System.out.println("MAX_VALUE: " + Double.MAX_VALUE); System.out.println("MIN_VALUE: " + Double.MIN_VALUE); System.out.println("MIN_NORMAL: " + Double.MIN_NORMAL); System.out.println("MAX_EXPONENT: " + Double.MAX_EXPONENT); System.out.println("MIN_EXPONENT: " + Double.MIN_EXPONENT); System.out.println("SIZE: " + Double.SIZE + " bits"); System.out.println("BYTES: " + Double.BYTES + " bytes"); // Demonstrating overflow double max = Double.MAX_VALUE; System.out.println("MAX_VALUE * 2: " + (max * 2)); // Demonstrating underflow double min = Double.MIN_VALUE; System.out.println("MIN_VALUE / 2: " + (min / 2)); } }
This example displays the limits of double-precision floating-point numbers.
MAX_VALUE
is the largest finite positive value, while
MIN_VALUE
is the smallest positive nonzero value. Overflow
results in infinity, while underflow can result in zero.
Source
Java Double Class Documentation
In this article, we've covered the essential methods and features of the Java Double class. Understanding these concepts is crucial for working with floating-point numbers in Java applications.
Author
List all Java tutorials.