Golang Selection Sort
last modified March 9, 2025
This article explores the selection sort algorithm in Golang. We'll define it, show examples for sorting numbers and strings, and compare it with quick sort.
An algorithm is a clear, step-by-step process to solve a problem or complete a task. It's a core concept in programming, guiding how code works.
Sorting organizes data into a specific order, like ascending or descending. It's a key skill in computer science for managing and accessing data.
Common Sorting Algorithms
Here are some widely used sorting algorithms:
- Selection Sort
- Bubble Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
Selection Sort Algorithm
The selection sort algorithm repeatedly scans the unsorted part of a list to find the smallest (or largest) element. It then swaps this element with the first unsorted position. This repeats until the list is fully sorted.
It's simple to understand and implement, but not the fastest for large datasets.
Selection Sort Example
Below is a Golang implementation of selection sort. It works with slices and can sort in ascending or descending order.
package main import "fmt" func selectionSort(arr []interface{}, ascending bool) []interface{} { n := len(arr) for i := 0; i < n; i++ { idx := i for j := i + 1; j < n; j++ { less := compare(arr[j], arr[idx]) < 0 if (ascending && less) || (!ascending && !less) { idx = j } } arr[i], arr[idx] = arr[idx], arr[i] } return arr } func compare(a, b interface{}) int { switch a.(type) { case int: return a.(int) - b.(int) case string: if a.(string) < b.(string) { return -1 } else if a.(string) > b.(string) { return 1 } return 0 } return 0 } func main() { // Sorting numeric data numbers := []interface{}{64, 25, 12, 22, 11} fmt.Println("Ascending:", selectionSort(numbers, true)) fmt.Println("Descending:", selectionSort(numbers, false)) // Sorting textual data words := []interface{}{"apple", "banana", "kiwi", "cherry"} fmt.Println("Ascending:", selectionSort(words, true)) fmt.Println("Descending:", selectionSort(words, false)) }
The selectionSort
function takes a slice of interface{}
and a boolean for sort direction. It uses a helper compare
function
to handle different data types like integers and strings.
$ go run selection_sort.go Ascending: [11 12 22 25 64] Descending: [64 25 22 12 11] Ascending: [apple banana cherry kiwi] Descending: [kiwi cherry banana apple]
Comparing Selection Sort with Quick Sort
Selection sort is easy to code but slow for big lists, with a time complexity of O(n²). Quick sort, using a divide-and-conquer strategy, is faster at O(n log n) on average. Let's benchmark them.
package main import ( "fmt" "math/rand" "time" ) func selectionSort(arr []int) []int { n := len(arr) for i := 0; i < n; i++ { idx := i for j := i + 1; j < n; j++ { if arr[j] < arr[idx] { idx = j } } arr[i], arr[idx] = arr[idx], arr[i] } return arr } func quickSort(arr []int) []int { if len(arr) <= 1 { return arr } pivot := arr[len(arr)/2] left, middle, right := []int{}, []int{}, []int{} for _, x := range arr { if x < pivot { left = append(left, x) } else if x == pivot { middle = append(middle, x) } else { right = append(right, x) } } return append(append(quickSort(left), middle...), quickSort(right)...) } func main() { rand.Seed(time.Now().UnixNano()) data := make([]int, 1000) for i := range data { data[i] = rand.Intn(1000) } // Benchmark selection sort start := time.Now() selectionSort(append([]int{}, data...)) fmt.Printf("Selection Sort Time: %.6f seconds\n", time.Since(start).Seconds()) // Benchmark quick sort start = time.Now() quickSort(append([]int{}, data...)) fmt.Printf("Quick Sort Time: %.6f seconds\n", time.Since(start).Seconds()) }
This benchmarks selection sort and quick sort on 1000 random integers. Quick sort typically finishes much faster due to its efficient design.
Source
This tutorial covered selection sort in Golang and compared it with quick sort.
Author
List all Golang tutorials.