Go Radix Sort
last modified March 8, 2025
This tutorial implements and explains the Radix Sort algorithm in Go, focusing on sorting numeric and textual data efficiently.
An algorithm is a precise sequence of steps crafted to solve a problem or execute a task. It's a core concept in programming, driving computational solutions.
Sorting involves arranging data into a defined order, like ascending or descending. It enhances data access speed and supports analysis in applications like search engines.
Common Sorting Algorithms
Here are some notable sorting algorithms:
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Radix Sort
Radix Sort
Radix Sort is a non-comparative algorithm that sorts by processing each digit or character of the data, from least to most significant. It excels with integers and fixed-length strings.
Unlike comparison-based sorts like Quick Sort, Radix Sort uses counting to distribute elements into buckets, offering linear time complexity under specific conditions.
Radix Sort Example
Here's a Go implementation of Radix Sort for integers.
package main import "fmt" func countingSort(arr []int, exp int) { n := len(arr) output := make([]int, n) count := make([]int, 10) for i := 0; i < n; i++ { index := arr[i] / exp count[index%10]++ } for i := 1; i < 10; i++ { count[i] += count[i-1] } for i := n - 1; i >= 0; i-- { index := arr[i] / exp output[count[index%10]-1] = arr[i] count[index%10]-- } for i := 0; i < n; i++ { arr[i] = output[i] } } func radixSort(arr []int) { maxNum := arr[0] for _, num := range arr { if num > maxNum { maxNum = num } } for exp := 1; maxNum/exp > 0; exp *= 10 { countingSort(arr, exp) } } func main() { arr := []int{170, 45, 75, 90, 802, 24, 2, 66} radixSort(arr) fmt.Println("Sorted array:", arr) }
This code uses countingSort
as a helper to sort by each digit,
starting from the least significant. The exp
variable tracks the
current digit place (1, 10, 100, etc.).
The radixSort
function finds the maximum number to determine how
many digits to process. It modifies the array in place, sorting it in ascending
order efficiently.
$ go run radix_sort.go Sorted array: [2 24 45 66 75 90 170 802]
Sorting Textual Data
Radix Sort can sort strings too. Below is an example sorting strings in both ascending and descending order.
package main import "fmt" func countingSortStrings(arr []string, index int) { n := len(arr) output := make([]string, n) count := make([]int, 256) for i := 0; i < n; i++ { char := byte(0) if index < len(arr[i]) { char = arr[i][index] } count[char]++ } for i := 1; i < 256; i++ { count[i] += count[i-1] } for i := n - 1; i >= 0; i-- { char := byte(0) if index < len(arr[i]) { char = arr[i][index] } output[count[char]-1] = arr[i] count[char]-- } for i := 0; i < n; i++ { arr[i] = output[i] } } func radixSortStrings(arr []string, reverse bool) { maxLen := 0 for _, s := range arr { if len(s) > maxLen { maxLen = len(s) } } for i := maxLen - 1; i >= 0; i-- { countingSortStrings(arr, i) } if reverse { for i, j := 0, len(arr)-1; i < j; i, j = i+1, j-1 { arr[i], arr[j] = arr[j], arr[i] } } } func main() { arr := []string{"apple", "banana", "kiwi", "mango", "cherry"} radixSortStrings(arr, false) fmt.Println("Ascending order:", arr) radixSortStrings(arr, true) fmt.Println("Descending order:", arr) }
The countingSortStrings
function sorts based on a specific
character position, using a 256-slot count array for ASCII characters. It pads
shorter strings with null bytes implicitly.
The radixSortStrings
function processes characters from right to
left, ensuring correct lexicographical order. The reverse
flag
swaps elements for descending order after sorting.
This is practical for sorting names, IDs, or tags in Go applications requiring textual data organization.
$ go run radix_sort_strings.go Ascending order: [apple banana cherry kiwi mango] Descending order: [mango kiwi cherry banana apple]
Radix Sort vs Quick Sort
Radix Sort shines with fixed-size data like integers or strings, boasting a time complexity of O(nk), where k is the number of digits or characters. Quick Sort, with O(n log n) average complexity, is more versatile.
The benchmark below compares their performance on a large integer dataset in Go, highlighting their strengths.
package main import ( "fmt" "math/rand" "time" ) func countingSort(arr []int, exp int) { n := len(arr) output := make([]int, n) count := make([]int, 10) for i := 0; i < n; i++ { index := arr[i] / exp count[index%10]++ } for i := 1; i < 10; i++ { count[i] += count[i-1] } for i := n - 1; i >= 0; i-- { index := arr[i] / exp output[count[index%10]-1] = arr[i] count[index%10]-- } for i := 0; i < n; i++ { arr[i] = output[i] } } func radixSort(arr []int) { maxNum := arr[0] for _, num := range arr { if num > maxNum { maxNum = num } } for exp := 1; maxNum/exp > 0; exp *= 10 { countingSort(arr, exp) } } func quickSort(arr []int) []int { if len(arr) <= 1 { return arr } pivot := arr[len(arr)/2] left := []int{} middle := []int{} right := []int{} for _, x := range arr { if x < pivot { left = append(left, x) } else if x == pivot { middle = append(middle, x) } else { right = append(right, x) } } left = quickSort(left) right = quickSort(right) return append(append(left, middle...), right...) } func main() { rand.Seed(time.Now().UnixNano()) arr := make([]int, 10000) for i := range arr { arr[i] = rand.Intn(10000) } radixData := make([]int, len(arr)) copy(radixData, arr) start := time.Now() radixSort(radixData) radixTime := time.Since(start) quickData := make([]int, len(arr)) copy(quickData, arr) start = time.Now() quickSort(quickData) quickTime := time.Since(start) fmt.Printf("Radix Sort time: %.6f seconds\n", radixTime.Seconds()) fmt.Printf("Quick Sort time: %.6f seconds\n", quickTime.Seconds()) }
This benchmark creates 10,000 random integers. radixSort
sorts in
place using digit-based counting, while quickSort
recursively
partitions the data, returning a new slice.
Radix Sort often outperforms Quick Sort for integers with a small range of digits, but Quick Sort adapts better to varied data types. Results vary, but Radix Sort typically edges out on this dataset.
Source
This tutorial implemented Radix Sort in Go, covering numbers and strings, with a comparison to Quick Sort for performance insights.
Author
List all Go tutorials.