ZetCode

Go Quick Sort

last modified March 8, 2025

This tutorial explores the Quick Sort algorithm in Go, showing how to sort numeric and textual data in ascending and descending order.

An algorithm is a structured sequence of steps designed to address a problem or perform a task efficiently. It's a cornerstone of programming, guiding computational logic.

Sorting means organizing data into a specific sequence, such as ascending (small to large) or descending (large to small). It's vital for tasks like data retrieval and presentation.

Common Sorting Algorithms

Here are some well-known sorting algorithms:

Quick Sort Algorithm

Quick Sort is a divide-and-conquer algorithm that selects a pivot element and partitions the array around it. Elements smaller than the pivot go left, larger ones go right.

The sub-arrays are recursively sorted, leading to a fully sorted array. With an average time complexity of O(n log n), it's efficient for most datasets, though worst-case is O(n²).

Quick Sort Example

Below is a Go implementation of Quick Sort for numbers and strings.

quick_sort.go
package main

import "fmt"

func quickSort(arr []int) []int {

    if len(arr) <= 1 {
        return arr
    }
    
    pivot := arr[len(arr)/2]
    left := []int{}
    middle := []int{}
    right := []int{}
    
    for _, x := range arr {
        if x < pivot {
            left = append(left, x)
        } else if x == pivot {
            middle = append(middle, x)
        } else {
            right = append(right, x)
        }
    }
    
    left = quickSort(left)
    right = quickSort(right)
    return append(append(left, middle...), right...)
}

func quickSortStrings(arr []string) []string {

    if len(arr) <= 1 {
        return arr
    }
    pivot := arr[len(arr)/2]
    left := []string{}
    middle := []string{}
    right := []string{}
    
    for _, x := range arr {
        if x < pivot {
            left = append(left, x)
        } else if x == pivot {
            middle = append(middle, x)
        } else {
            right = append(right, x)
        }
    }

    left = quickSortStrings(left)
    right = quickSortStrings(right)
    return append(append(left, middle...), right...)
}

func main() {

    numbers := []int{3, 6, 8, 10, 1, 2, 1}
    sortedNumbers := quickSort(numbers)
    fmt.Println("Sorted numbers:", sortedNumbers)

    words := []string{"banana", "apple", "cherry", "date"}
    sortedWords := quickSortStrings(words)
    fmt.Println("Sorted words:", sortedWords)
}

The quickSort function sorts integers, while quickSortStrings handles strings. Both use a middle pivot and partition the data recursively.

The result is a new sorted slice in ascending order. This approach leverages Go's type system, ensuring flexibility for different data types in a concise way.

$ go run quick_sort.go
Sorted numbers: [1 1 2 3 6 8 10]
Sorted words: [apple banana cherry date]

Sorting in Descending Order

Here's how to adapt Quick Sort for descending order in Go.

quick_sort_desc.go
package main

import "fmt"

func quickSortDesc(arr []int) []int {
    
    if len(arr) <= 1 {
        return arr
    }
    
    pivot := arr[len(arr)/2]
    left := []int{}
    middle := []int{}
    right := []int{}
    
    for _, x := range arr {
        if x > pivot {
            left = append(left, x)
        } else if x == pivot {
            middle = append(middle, x)
        } else {
            right = append(right, x)
        }
    }
    left = quickSortDesc(left)
    right = quickSortDesc(right)
    return append(append(left, middle...), right...)
}

func quickSortStringsDesc(arr []string) []string {

    if len(arr) <= 1 {
        return arr
    }
    pivot := arr[len(arr)/2]
    left := []string{}
    middle := []string{}
    right := []string{}
    
    for _, x := range arr {
        if x > pivot {
            left = append(left, x)
        } else if x == pivot {
            middle = append(middle, x)
        } else {
            right = append(right, x)
        }
    }

    left = quickSortStringsDesc(left)
    right = quickSortStringsDesc(right)
    return append(append(left, middle...), right...)
}

func main() {
    numbers := []int{3, 6, 8, 10, 1, 2, 1}
    sortedNumbersDesc := quickSortDesc(numbers)
    fmt.Println("Sorted numbers (descending):", sortedNumbersDesc)

    words := []string{"banana", "apple", "cherry", "date"}
    sortedWordsDesc := quickSortStringsDesc(words)
    fmt.Println("Sorted words (descending):", sortedWordsDesc)
}

The quickSortDesc and quickSortStringsDesc functions reverse the partitioning logic—larger elements go left, smaller go right—yielding descending order.

This adaptation is useful for scenarios like ranking items from highest to lowest, such as scores or alphabetically reversed lists in Go applications.

$ go run quick_sort_desc.go
Sorted numbers (descending): [10 8 6 3 2 1 1]
Sorted words (descending): [date cherry banana apple]

Comparing Quick Sort with Insertion Sort

Quick Sort's average O(n log n) performance outshines Insertion Sort's O(n²), especially for large datasets. This benchmark in Go illustrates the difference.

benchmark.go
package main

import (
    "fmt"
    "math/rand"
    "time"
)

func quickSort(arr []int) []int {

    if len(arr) <= 1 {
        return arr
    }
    pivot := arr[len(arr)/2]
    left := []int{}
    middle := []int{}
    right := []int{}

    for _, x := range arr {
        if x < pivot {
            left = append(left, x)
        } else if x == pivot {
            middle = append(middle, x)
        } else {
            right = append(right, x)
        }
    }

    left = quickSort(left)
    right = quickSort(right)
    return append(append(left, middle...), right...)
}

func insertionSort(arr []int) []int {

    result := make([]int, len(arr))
    copy(result, arr)

    for i := 1; i < len(result); i++ {
        key := result[i]
        j := i - 1
        for j >= 0 && key < result[j] {
            result[j+1] = result[j]
            j--
        }
        result[j+1] = key
    }
    return result
}

func main() {

    rand.Seed(time.Now().UnixNano())
    data := make([]int, 10000)
    for i := range data {
        data[i] = rand.Intn(1000)
    }

    quickData := make([]int, len(data))
    copy(quickData, data)
    start := time.Now()
    quickSort(quickData)
    quickTime := time.Since(start)

    insertData := make([]int, len(data))
    copy(insertData, data)
    start = time.Now()
    insertionSort(insertData)
    insertTime := time.Since(start)

    fmt.Printf("Quick Sort time: %.6f seconds\n", quickTime.Seconds())
    fmt.Printf("Insertion Sort time: %.6f seconds\n", insertTime.Seconds())
}

This code generates 10,000 random integers and times both algorithms. Quick Sort uses recursion and partitioning, while Insertion Sort shifts elements one by one.

Quick Sort typically finishes much faster—often by an order of magnitude—due to its logarithmic scaling. Insertion Sort, while simpler, struggles with large data, making it less practical here.

Such comparisons help developers choose algorithms based on dataset size and performance needs in Go projects.

Source

Go sort package documentation

This tutorial explained Quick Sort in Go, with examples for ascending and descending sorts, plus a benchmark against Insertion Sort.

Author

My name is Jan Bodnar, and I am a passionate programmer with extensive programming experience. I have been writing programming articles since 2007. To date, I have authored over 1,400 articles and 8 e-books. I possess more than ten years of experience in teaching programming.

List all Go tutorials.