Go Merge Sort Tutorial
last modified March 8, 2025
This tutorial explores the Merge Sort algorithm in Go, demonstrating its use for sorting numeric and textual data in ascending and descending order, with a benchmark against Quick Sort.
An algorithm is a structured sequence of steps crafted to solve a problem or perform a task efficiently. It's a cornerstone of programming, driving computational solutions.
Sorting means organizing data into a specific sequence, such as ascending or descending. It's vital for enhancing data retrieval and analysis in various applications.
Common Sorting Algorithms
Here are some well-known sorting algorithms:
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
Merge Sort Algorithm
Merge Sort is a divide-and-conquer algorithm that splits an array into two halves, recursively sorts each half, and then merges them back together in sorted order.
With a consistent time complexity of O(n log n), Merge Sort is stable and efficient, though it requires extra space for merging. It excels with linked lists and large datasets.
Merge Sort Example
Below is a Go implementation of Merge Sort for numbers and strings.
package main import "fmt" func mergeSort(arr []int) []int { if len(arr) <= 1 { return arr } mid := len(arr) / 2 left := mergeSort(arr[:mid]) right := mergeSort(arr[mid:]) return merge(left, right) } func merge(left, right []int) []int { result := make([]int, 0, len(left)+len(right)) i, j := 0, 0 for i < len(left) && j < len(right) { if left[i] < right[j] { result = append(result, left[i]) i++ } else { result = append(result, right[j]) j++ } } result = append(result, left[i:]...) result = append(result, right[j:]...) return result } func mergeSortStrings(arr []string) []string { if len(arr) <= 1 { return arr } mid := len(arr) / 2 left := mergeSortStrings(arr[:mid]) right := mergeSortStrings(arr[mid:]) return mergeStrings(left, right) } func mergeStrings(left, right []string) []string { result := make([]string, 0, len(left)+len(right)) i, j := 0, 0 for i < len(left) && j < len(right) { if left[i] < right[j] { result = append(result, left[i]) i++ } else { result = append(result, right[j]) j++ } } result = append(result, left[i:]...) result = append(result, right[j:]...) return result } func sortDescending(arr []int) []int { sorted := mergeSort(arr) for i, j := 0, len(sorted)-1; i < j; i, j = i+1, j-1 { sorted[i], sorted[j] = sorted[j], sorted[i] } return sorted } func sortStringsDescending(arr []string) []string { sorted := mergeSortStrings(arr) for i, j := 0, len(sorted)-1; i < j; i, j = i+1, j-1 { sorted[i], sorted[j] = sorted[j], sorted[i] } return sorted } func main() { numbers := []int{38, 27, 43, 3, 9, 82, 10} words := []string{"apple", "banana", "cherry", "date", "elderberry"} fmt.Println("Sorted numbers (ascending):", mergeSort(numbers)) fmt.Println("Sorted numbers (descending):", sortDescending(numbers)) fmt.Println("Sorted words (ascending):", mergeSortStrings(words)) fmt.Println("Sorted words (descending):", sortStringsDescending(words)) }
The mergeSort
function recursively splits and merges integer
slices, while mergeSortStrings
does the same for strings. The
merge
helper combines sorted halves.
For descending order, sortDescending
and
sortStringsDescending
reverse the ascending result. This approach
leverages Go's slice operations for clarity and efficiency.
$ go run merge_sort.go Sorted numbers (ascending): [3 9 10 27 38 43 82] Sorted numbers (descending): [82 43 38 27 10 9 3] Sorted words (ascending): [apple banana cherry date elderberry] Sorted words (descending): [elderberry date cherry banana apple]
Comparing Merge Sort with Quick Sort
Merge Sort guarantees O(n log n) time complexity and stability, making it reliable. Quick Sort averages O(n log n) but can degrade to O(n²) in worst-case scenarios, like sorted data.
This benchmark compares their performance on a large dataset in Go.
package main import ( "fmt" "math/rand" "time" ) func mergeSort(arr []int) []int { if len(arr) <= 1 { return arr } mid := len(arr) / 2 left := mergeSort(arr[:mid]) right := mergeSort(arr[mid:]) return merge(left, right) } func merge(left, right []int) []int { result := make([]int, 0, len(left)+len(right)) i, j := 0, 0 for i < len(left) && j < len(right) { if left[i] < right[j] { result = append(result, left[i]) i++ } else { result = append(result, right[j]) j++ } } result = append(result, left[i:]...) result = append(result, right[j:]...) return result } func quickSort(arr []int) []int { if len(arr) <= 1 { return arr } pivot := arr[len(arr)/2] left := []int{} middle := []int{} right := []int{} for _, x := range arr { if x < pivot { left = append(left, x) } else if x == pivot { middle = append(middle, x) } else { right = append(right, x) } } left = quickSort(left) right = quickSort(right) return append(append(left, middle...), right...) } func main() { rand.Seed(time.Now().UnixNano()) numbers := make([]int, 10000) for i := range numbers { numbers[i] = rand.Intn(10000) } mergeData := make([]int, len(numbers)) copy(mergeData, numbers) start := time.Now() mergeSort(mergeData) mergeTime := time.Since(start) quickData := make([]int, len(numbers)) copy(quickData, numbers) start = time.Now() quickSort(quickData) quickTime := time.Since(start) fmt.Printf("Merge Sort Time: %.6f seconds\n", mergeTime.Seconds()) fmt.Printf("Quick Sort Time: %.6f seconds\n", quickTime.Seconds()) }
This benchmark tests Merge Sort and Quick Sort on 10,000 random integers. Merge Sort creates new slices during merging, while Quick Sort partitions in a similar recursive manner.
Merge Sort's predictable performance contrasts with Quick Sort's potential speed advantage due to better cache locality. Actual results vary, but Merge Sort ensures consistency.
Source
This tutorial explained Merge Sort in Go, with examples for numbers and text, and a benchmark against Quick Sort.
Author
List all Go tutorials.