Go Heap Sort Algorithm
last modified March 8, 2025
This tutorial explains the Heap Sort algorithm in Go, covering sorting of numeric and textual data in ascending and descending order, with a benchmark against Quick Sort.
An algorithm is a precise sequence of steps designed to solve a problem or complete a task efficiently. It's a fundamental building block of programming logic.
Sorting involves arranging data into a specific order, like ascending or descending. It's essential for optimizing data access and processing in applications.
Common Sorting Algorithms
Here are some widely recognized sorting algorithms:
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
Heap Sort Algorithm
Heap Sort is a comparison-based algorithm that leverages a binary heap data structure. It first builds a max-heap (for ascending order), then repeatedly extracts the largest element.
With a consistent time complexity of O(n log n), Heap Sort is efficient and stable for large datasets. It's particularly useful when memory usage must be minimized, as it sorts in place.
Heap Sort Example
Below is a Go implementation of Heap Sort for numeric data.
package main import "fmt" func heapify(arr []int, n, i int) { largest := i left := 2*i + 1 right := 2*i + 2 if left < n && arr[i] < arr[left] { largest = left } if right < n && arr[largest] < arr[right] { largest = right } if largest != i { arr[i], arr[largest] = arr[largest], arr[i] heapify(arr, n, largest) } } func heapSort(arr []int) { n := len(arr) for i := n/2 - 1; i >= 0; i-- { heapify(arr, n, i) } for i := n - 1; i > 0; i-- { arr[i], arr[0] = arr[0], arr[i] heapify(arr, i, 0) } } func main() { arr := []int{12, 11, 13, 5, 6, 7} heapSort(arr) fmt.Println("Sorted array:", arr) }
The heapify
function ensures the max-heap property by comparing a
node with its children and swapping if needed. It's called recursively to
maintain the heap structure.
The heapSort
function first builds a max-heap from the array, then
iteratively moves the largest element (root) to the end, reducing the heap size
and re-heapifying.
$ go run heap_sort.go Sorted array: [5 6 7 11 12 13]
Heap Sort for Textual Data
Heap Sort can sort strings too. Here's an example for ascending order in Go.
package main import "fmt" func heapify(arr []string, n, i int) { largest := i left := 2*i + 1 right := 2*i + 2 if left > n && arr[i] > arr[left] { largest = left } if right > n && arr[largest] > arr[right] { largest = right } if largest != i { arr[i], arr[largest] = arr[largest], arr[i] heapify(arr, n, largest) } } func heapSort(arr []string) { n := len(arr) for i := n/2 - 1; i >= 0; i-- { heapify(arr, n, i) } for i := n - 1; i > 0; i-- { arr[i], arr[0] = arr[0], arr[i] heapify(arr, i, 0) } } func main() { arr := []string{"banana", "apple", "cherry", "date"} heapSort(arr) fmt.Println("Sorted array:", arr) }
This version adapts heapify
and heapSort
for strings,
using Go's built-in string comparison. It sorts the slice in place, arranging
the strings alphabetically.
This is useful for tasks like sorting lists of names or tags in Go programs, leveraging the same heap-based logic as with numbers.
$ go run heap_sort_text.go Sorted array: [apple banana cherry date]
Heap Sort in Descending Order
For descending order, we modify heapify
to build a min-heap instead
of a max-heap.
package main import "fmt" func heapify(arr []int, n, i int) { smallest := i left := 2*i + 1 right := 2*i + 2 if left < n && arr[i] > arr[left] { smallest = left } if right < n && arr[smallest] > arr[right] { smallest = right } if smallest != i { arr[i], arr[smallest] = arr[smallest], arr[i] heapify(arr, n, smallest) } } func heapSortDesc(arr []int) { n := len(arr) for i := n/2 - 1; i >= 0; i-- { heapify(arr, n, i) } for i := n - 1; i > 0; i-- { arr[i], arr[0] = arr[0], arr[i] heapify(arr, i, 0) } } func main() { arr := []int{12, 11, 13, 5, 6, 7} heapSortDesc(arr) fmt.Println("Sorted array in descending order:", arr) }
The heapify
function now ensures a min-heap by selecting the
smallest value among the node and its children. heapSortDesc
builds and extracts from this min-heap.
This sorts the array in descending order, useful for ranking items from highest to lowest, such as scores or priorities in Go applications.
$ go run heap_sort_desc.go Sorted array in descending order: [13 12 11 7 6 5]
Heap Sort vs Quick Sort
Heap Sort guarantees O(n log n) time complexity, making it predictable. Quick Sort averages O(n log n) but can hit O(n²) in rare worst-case scenarios, like nearly sorted data.
Benchmarking Heap Sort and Quick Sort
This benchmark compares Heap Sort and Quick Sort on a random dataset in Go.
package main import ( "fmt" "math/rand" "time" ) func heapify(arr []int, n, i int) { largest := i left := 2*i + 1 right := 2*i + 2 if left < n && arr[i] < arr[left] { largest = left } if right < n && arr[largest] < arr[right] { largest = right } if largest != i { arr[i], arr[largest] = arr[largest], arr[i] heapify(arr, n, largest) } } func heapSort(arr []int) { n := len(arr) for i := n/2 - 1; i >= 0; i-- { heapify(arr, n, i) } for i := n - 1; i > 0; i-- { arr[i], arr[0] = arr[0], arr[i] heapify(arr, i, 0) } } func quickSort(arr []int) []int { if len(arr) <= 1 { return arr } pivot := arr[len(arr)/2] left := []int{} middle := []int{} right := []int{} for _, x := range arr { if x < pivot { left = append(left, x) } else if x == pivot { middle = append(middle, x) } else { right = append(right, x) } } left = quickSort(left) right = quickSort(right) return append(append(left, middle...), right...) } func main() { rand.Seed(time.Now().UnixNano()) arr := make([]int, 1000) for i := range arr { arr[i] = rand.Intn(1000) } heapData := make([]int, len(arr)) copy(heapData, arr) start := time.Now() heapSort(heapData) heapTime := time.Since(start) quickData := make([]int, len(arr)) copy(quickData, arr) start = time.Now() quickSort(quickData) quickTime := time.Since(start) fmt.Printf("Heap Sort Time: %.6f seconds\n", heapTime.Seconds()) fmt.Printf("Quick Sort Time: %.6f seconds\n", quickTime.Seconds()) }
This code benchmarks both algorithms on 1,000 random integers. Heap Sort sorts in place using a max-heap, while Quick Sort builds new slices via partitioning.
Heap Sort's consistent O(n log n) performance contrasts with Quick Sort's potential variability. Quick Sort often edges out slightly due to better cache usage, but results depend on data patterns.
Source
This tutorial explained Heap Sort in Go, with examples for numbers and text, and a benchmark against Quick Sort.
Author
List all Go tutorials.