Transformations in PyCairo
last modified July 17, 2023
In this part of the PyCairo graphics programming tutorial we talk about transformations.
An affine transform is composed of zero or more linear transformations (rotation, scaling or shear) and translation (shift). Several linear transformations can be combined into a single matrix. A rotation is a transformation that moves a rigid body around a fixed point. A scaling is a transformation that enlarges or diminishes objects. The scale factor is the same in all directions. A translation is a transformation that moves every point a constant distance in a specified direction. A shear is a transformation that moves an object perpendicular to a given axis, with greater value on one side of the axis than the other.
Translation
The following example describes a simple translation.
def on_draw(self, wid, cr): cr.set_source_rgb(0.2, 0.3, 0.8) cr.rectangle(10, 10, 30, 30) cr.fill() cr.translate(20, 20) cr.set_source_rgb(0.8, 0.3, 0.2) cr.rectangle(0, 0, 30, 30) cr.fill() cr.translate(30, 30) cr.set_source_rgb(0.8, 0.8, 0.2) cr.rectangle(0, 0, 30, 30) cr.fill() cr.translate(40, 40) cr.set_source_rgb(0.3, 0.8, 0.8) cr.rectangle(0, 0, 30, 30) cr.fill()
The example draws a rectangle. Then we do a translation and draw the same rectangle again a few times.
cr.translate(20, 20)
The translate
function modifies the current transformation
matrix by translating the user space origin. In our case we shift the origin
by 20 units in both directions.
Shearing
In the following example, we perform a shearing operation. A shearing is an object distortion along a particular axis. There is no shear method for this operation. We need to create our own transformation matrix. Note that each affine transformation can be performed by creating a transformation matrix.
def on_draw(self, wid, cr): cr.set_source_rgb(0.6, 0.6, 0.6) cr.rectangle(20, 30, 80, 50) cr.fill() mtx = cairo.Matrix(1.0, 0.5, 0.0, 1.0, 0.0, 0.0) cr.transform(mtx) cr.rectangle(130, 30, 80, 50) cr.fill()
In this code example, we perform a simple shearing operation.
mtx = cairo.Matrix(1.0, 0.5, 0.0, 1.0, 0.0, 0.0)
This transformation shears y values by 0.5 of the x values.
cr.transform(mtx)
We perform the transformation with the transform
method.
Scaling
The next example demonstrates a scaling operation. Scaling is a transformation operation where the object is enlarged or shrunken.
def on_draw(self, wid, cr): cr.set_source_rgb(0.2, 0.3, 0.8) cr.rectangle(10, 10, 90, 90) cr.fill() cr.scale(0.6, 0.6) cr.set_source_rgb(0.8, 0.3, 0.2) cr.rectangle(30, 30, 90, 90) cr.fill() cr.scale(0.8, 0.8) cr.set_source_rgb(0.8, 0.8, 0.2) cr.rectangle(50, 50, 90, 90) cr.fill()
We draw three rectangles of 90x90px size. On two of them, we perform a scaling operation.
cr.scale(0.6, 0.6) cr.set_source_rgb(0.8, 0.3, 0.2) cr.rectangle(30, 30, 90, 90) cr.fill()
We uniformly scale a rectangle by a factor of 0.6.
cr.scale(0.8, 0.8) cr.set_source_rgb(0.8, 0.8, 0.2) cr.rectangle(50, 50, 90, 90) cr.fill()
Here we perform another scaling operation by a factor of 0.8. If we look at the picture, we can see that the third yellow rectangle is the smallest one. Even if we have used a smaller scaling factor. This is because transformation operations are additive. In fact, the third rectangle was scaled by a factor of 0.528 (0.6x0.8).
Isolating transformations
Transformation operations are additive. To isolate one operation from
the other one, we can use the save
and restore
methods. The save
method makes a copy of the current state of the
drawing context and saves it on an internal stack of saved states.
The restore
method will re-establish the context to the
saved state.
def on_draw(self, wid, cr): cr.set_source_rgb(0.2, 0.3, 0.8) cr.rectangle(10, 10, 90, 90) cr.fill() cr.save() cr.scale(0.6, 0.6) cr.set_source_rgb(0.8, 0.3, 0.2) cr.rectangle(30, 30, 90, 90) cr.fill() cr.restore() cr.save() cr.scale(0.8, 0.8) cr.set_source_rgb(0.8, 0.8, 0.2) cr.rectangle(50, 50, 90, 90) cr.fill() cr.restore()
In the example we scale two rectangles. This time we isolate the scaling operations from each other.
cr.save() cr.scale(0.6, 0.6) cr.set_source_rgb(0.8, 0.3, 0.2) cr.rectangle(30, 30, 90, 90) cr.fill() cr.restore()
We isolate the scaling operation by putting the scale
method between the save
and restore
methods.
Now the third yellow rectangle is bigger than the second red one.
Donut
In the following example we create a complex shape by rotating a bunch of ellipses.
#!/usr/bin/python ''' ZetCode PyCairo tutorial This program creates a 'donut' shape in PyCairo. author: Jan Bodnar website: zetcode.com ''' from gi.repository import Gtk import cairo import math class Example(Gtk.Window): def __init__(self): super(Example, self).__init__() self.init_ui() def init_ui(self): darea = Gtk.DrawingArea() darea.connect("draw", self.on_draw) self.add(darea) self.set_title("Donut") self.resize(350, 250) self.set_position(Gtk.WindowPosition.CENTER) self.connect("delete-event", Gtk.main_quit) self.show_all() def on_draw(self, wid, cr): cr.set_line_width(0.5) w, h = self.get_size() cr.translate(w/2, h/2) cr.arc(0, 0, 120, 0, 2*math.pi) cr.stroke() for i in range(36): cr.save() cr.rotate(i*math.pi/36) cr.scale(0.3, 1) cr.arc(0, 0, 120, 0, 2*math.pi) cr.restore() cr.stroke() def main(): app = Example() Gtk.main() if __name__ == "__main__": main()
We do rotation and scaling operations. We also save and restore PyCairo contexts.
cr.translate(w/2, h/2) cr.arc(0, 0, 120, 0, 2*math.pi) cr.stroke()
In the middle of the GTK window, we create a circle. This will be a bounding circle for our ellipses.
for i in range(36): cr.save() cr.rotate(i*math.pi/36) cr.scale(0.3, 1) cr.arc(0, 0, 120, 0, 2*math.pi) cr.restore() cr.stroke()
We create 36 ellipses along the path of our bounding circle. We insulate each
rotate and scale operation from one another with the save
and restore
methods.
Star
The next example shows a rotating and scaling star.
#!/usr/bin/python ''' ZetCode PyCairo tutorial This is a star example which demonstrates scaling, translating and rotating operations in PyCairo. author: Jan Bodnar website: zetcode.com ''' from gi.repository import Gtk, GLib import cairo class cv(object): points = ( ( 0, 85 ), ( 75, 75 ), ( 100, 10 ), ( 125, 75 ), ( 200, 85 ), ( 150, 125 ), ( 160, 190 ), ( 100, 150 ), ( 40, 190 ), ( 50, 125 ), ( 0, 85 ) ) SPEED = 20 TIMER_ID = 1 class Example(Gtk.Window): def __init__(self): super(Example, self).__init__() self.init_ui() self.init_vars() def init_ui(self): self.darea = Gtk.DrawingArea() self.darea.connect("draw", self.on_draw) self.add(self.darea) self.set_title("Star") self.resize(400, 300) self.set_position(Gtk.WindowPosition.CENTER) self.connect("delete-event", Gtk.main_quit) self.show_all() def init_vars(self): self.angle = 0 self.scale = 1 self.delta = 0.01 GLib.timeout_add(cv.SPEED, self.on_timer) def on_timer(self): if self.scale < 0.01: self.delta = -self.delta elif self.scale > 0.99: self.delta = -self.delta self.scale += self.delta self.angle += 0.01 self.darea.queue_draw() return True def on_draw(self, wid, cr): w, h = self.get_size() cr.set_source_rgb(0, 0.44, 0.7) cr.set_line_width(1) cr.translate(w/2, h/2) cr.rotate(self.angle) cr.scale(self.scale, self.scale) for i in range(10): cr.line_to(cv.points[i][0], cv.points[i][1]) cr.fill() def main(): app = Example() Gtk.main() if __name__ == "__main__": main()
In this example, we create a star object. We translate it, rotate it and scale it.
points = ( ( 0, 85 ), ( 75, 75 ), ( 100, 10 ), ( 125, 75 ), ( 200, 85 ), ...
The star object will be constructed from these points.
def init_vars(self): self.angle = 0 self.scale = 1 self.delta = 0.01 ...
In the init_vars
method, we initialize three variables.
The self.angle
is used in the rotation, the self.scale
in scaling the star object. The self.delta
variable controls when
the star is growing and when it is shrinking.
glib.timeout_add(cv.SPEED, self.on_timer)
Each cv.SPEED
ms the on_timer
method is called.
if self.scale < 0.01: self.delta = -self.delta elif self.scale > 0.99: self.delta = -self.delta
These lines control whether the star is going to grow or shrink.
cr.translate(w/2, h/2) cr.rotate(self.angle) cr.scale(self.scale, self.scale)
We shift the star into the middle of the window. Rotate it and scale it.
for i in range(10): cr.line_to(cv.points[i][0], cv.points[i][1]) cr.fill()
Here we draw the star object.
In this part of the PyCairo tutorial, we talked about transformations.