C# Selection Sort
last modified March 9, 2025
This article explores the selection sort algorithm in C#. We'll define it, show examples for sorting numbers and strings, and compare it with quick sort.
An algorithm is a clear, step-by-step process to solve a problem or complete a task. It's a core concept in programming, guiding how code works.
Sorting organizes data into a specific order, like ascending or descending. It's a key skill in computer science for managing and accessing data.
Common Sorting Algorithms
Here are some widely used sorting algorithms:
- Selection Sort
- Bubble Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
Selection Sort Algorithm
The selection sort algorithm repeatedly scans the unsorted part of a list to find the smallest (or largest) element. It then swaps this element with the first unsorted position.
This repeats until the list is fully sorted. It's simple to understand and implement, but not the fastest for large datasets.
Selection Sort Example
Below is a C# implementation of selection sort. It works with arrays and can sort in ascending or descending order.
// SelectionSort.cs T[] SelectionSort<T>(T[] arr, bool ascending) { int n = arr.Length; for (int i = 0; i < n; i++) { int idx = i; for (int j = i + 1; j < n; j++) { int comparison = Comparer<T>.Default.Compare(arr[j], arr[idx]); if ((ascending && comparison < 0) || (!ascending && comparison > 0)) { idx = j; } } if (idx != i) { (arr[i], arr[idx]) = (arr[idx], arr[i]); } } return arr; } int[] numbers = [64, 25, 12, 22, 11]; string[] words = ["apple", "banana", "kiwi", "cherry"]; Console.WriteLine("Ascending: " + string.Join(" ", SelectionSort(numbers, true))); Console.WriteLine("Descending: " + string.Join(" ", SelectionSort(numbers, false))); Console.WriteLine("Ascending: " + string.Join(" ", SelectionSort(words, true))); Console.WriteLine("Descending: " + string.Join(" ", SelectionSort(words, false)));
The SelectionSort
method takes an array of type T
and
a boolean for sort direction. It uses Comparer
to handle
different data types like integers and strings.
Comparing Selection Sort with Quick Sort
Selection sort is easy to code but slow for big lists, with a time complexity of O(n²). Quick sort, using a divide-and-conquer strategy, is faster at O(n log n) on average. Let's benchmark them.
// Benchmark.cs using System.Diagnostics; int[] SelectionSort(int[] arr) { int n = arr.Length; for (int i = 0; i < n; i++) { int idx = i; for (int j = i + 1; j < n; j++) { if (arr[j] < arr[idx]) { idx = j; } } if (idx != i) { (arr[i], arr[idx]) = (arr[idx], arr[i]); } } return arr; } int[] QuickSort(int[] arr) { if (arr.Length <= 1) { return arr; } int pivot = arr[arr.Length / 2]; var left = new List<int>(); var middle = new List<int>(); var right = new List<int>(); foreach (int x in arr) { if (x < pivot) { left.Add(x); } else if (x == pivot) { middle.Add(x); } else { right.Add(x); } } return [.. QuickSort(left.ToArray()), .. middle, .. QuickSort(right.ToArray())]; } Random rand = new(Random.Shared.Next()); int[] data = new int[1000]; for (int i = 0; i < data.Length; i++) { data[i] = rand.Next(1000); } // Benchmark selection sort int[] selectionData = data.ToArray(); Stopwatch sw = Stopwatch.StartNew(); SelectionSort(selectionData); Console.WriteLine($"Selection Sort Time: {sw.Elapsed.TotalSeconds:F6} seconds"); // Benchmark quick sort int[] quickData = data.ToArray(); sw = Stopwatch.StartNew(); QuickSort(quickData); Console.WriteLine($"Quick Sort Time: {sw.Elapsed.TotalSeconds:F6} seconds");
This benchmarks selection sort and quick sort on 1000 random integers. Quick sort typically finishes much faster due to its efficient design.
Source
This tutorial covered selection sort in C# and compared it with quick sort.
Author
List all C# tutorials.