C# Radix Sort
last modified March 8, 2025
This tutorial implements and explains the Radix Sort algorithm in C#, focusing on sorting numeric and textual data efficiently.
An algorithm is a precise sequence of steps crafted to solve a problem or execute a task. It's a core concept in programming, driving computational solutions.
Sorting involves arranging data into a defined order, like ascending or descending. It enhances data access speed and supports analysis in applications like search engines.
Common Sorting Algorithms
Here are some notable sorting algorithms:
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Radix Sort
Radix Sort
Radix Sort is a non-comparative algorithm that sorts by processing each digit or character of the data, from least to most significant. It excels with integers and fixed-length strings.
Unlike comparison-based sorts like Quick Sort, Radix Sort uses counting to distribute elements into buckets, offering linear time complexity under specific conditions.
Radix Sort Example
Here's a C# implementation of Radix Sort for integers using top-level statements.
// RadixSort.cs void CountingSort(int[] arr, int exp) { int n = arr.Length; int[] output = new int[n]; int[] count = new int[10]; for (int i = 0; i < n; i++) { int index = arr[i] / exp; count[index % 10]++; } for (int i = 1; i < 10; i++) { count[i] += count[i - 1]; } for (int i = n - 1; i >= 0; i--) { int index = arr[i] / exp; output[count[index % 10] - 1] = arr[i]; count[index % 10]--; } for (int i = 0; i < n; i++) { arr[i] = output[i]; } } void RadixSort(int[] arr) { int maxNum = arr.Max(); for (int exp = 1; maxNum / exp > 0; exp *= 10) { CountingSort(arr, exp); } } int[] arr = [170, 45, 75, 90, 802, 24, 2, 66]; RadixSort(arr); Console.WriteLine("Sorted array: " + string.Join(" ", arr));
This code uses CountingSort
as a helper to sort by
each digit, starting from the least significant. The
exp
variable tracks the current digit place (1, 10,
100, etc.).
The RadixSort
method finds the maximum number to
determine how many digits to process. It modifies the array in
place, sorting it in ascending order efficiently.
Sorting Textual Data
Radix Sort can sort strings too. Below is an example sorting strings in both ascending and descending order.
// RadixSortStrings.cs void CountingSortStrings(string[] arr, int index) { int n = arr.Length; string[] output = new string[n]; int[] count = new int[256]; for (int i = 0; i < n; i++) { byte charVal = 0; if (index < arr[i].Length) { charVal = (byte)arr[i][index]; } count[charVal]++; } for (int i = 1; i < 256; i++) { count[i] += count[i - 1]; } for (int i = n - 1; i >= 0; i--) { byte charVal = 0; if (index < arr[i].Length) { charVal = (byte)arr[i][index]; } output[count[charVal] - 1] = arr[i]; count[charVal]--; } for (int i = 0; i < n; i++) { arr[i] = output[i]; } } void RadixSortStrings(string[] arr, bool reverse) { int maxLen = arr.Max(s => s.Length); for (int i = maxLen - 1; i >= 0; i--) { CountingSortStrings(arr, i); } if (reverse) { for (int i = 0, j = arr.Length - 1; i < j; i++, j--) { (arr[i], arr[j]) = (arr[j], arr[i]); } } } string[] arr = ["apple", "banana", "kiwi", "mango", "cherry"]; RadixSortStrings(arr, false); Console.WriteLine("Ascending order: " + string.Join(" ", arr)); RadixSortStrings(arr, true); Console.WriteLine("Descending order: " + string.Join(" ", arr));
The CountingSortStrings
method sorts based on a
specific character position, using a 256-slot count array for
ASCII characters. It pads shorter strings with null bytes
implicitly.
The RadixSortStrings
method processes characters
from right to left, ensuring correct lexicographical order.
The reverse
flag swaps elements for descending
order after sorting.
This is practical for sorting names, IDs, or tags in C# applications requiring textual data organization.
Radix Sort vs Quick Sort
Radix Sort shines with fixed-size data like integers or strings, boasting a time complexity of O(nk), where k is the number of digits or characters. Quick Sort, with O(n log n) average complexity, is more versatile.
The benchmark below compares their performance on a large integer dataset in C#, highlighting their strengths.
// RadixVsQuick.cs using System.Diagnostics; void CountingSort(int[] arr, int exp) { int n = arr.Length; int[] output = new int[n]; int[] count = new int[10]; for (int i = 0; i < n; i++) { int index = arr[i] / exp; count[index % 10]++; } for (int i = 1; i < 10; i++) { count[i] += count[i - 1]; } for (int i = n - 1; i >= 0; i--) { int index = arr[i] / exp; output[count[index % 10] - 1] = arr[i]; count[index % 10]--; } for (int i = 0; i < n; i++) { arr[i] = output[i]; } } void RadixSort(int[] arr) { int maxNum = arr.Max(); for (int exp = 1; maxNum / exp > 0; exp *= 10) { CountingSort(arr, exp); } } int[] QuickSort(int[] arr) { if (arr.Length <= 1) { return arr; } int pivot = arr[arr.Length / 2]; var left = new List<int>(); var middle = new List<int>(); var right = new List<int>(); foreach (int x in arr) { if (x < pivot) { left.Add(x); } else if (x == pivot) { middle.Add(x); } else { right.Add(x); } } return [.. QuickSort(left.ToArray()), .. middle, .. QuickSort(right.ToArray())]; } Random rand = new(Random.Shared.Next()); int[] arr = new int[10000]; for (int i = 0; i < arr.Length; i++) { arr[i] = rand.Next(10000); } int[] radixData = arr.ToArray(); Stopwatch sw = Stopwatch.StartNew(); RadixSort(radixData); double radixTime = sw.Elapsed.TotalSeconds; int[] quickData = arr.ToArray(); sw = Stopwatch.StartNew(); QuickSort(quickData); double quickTime = sw.Elapsed.TotalSeconds; Console.WriteLine($"Radix Sort time: {radixTime:F6} seconds"); Console.WriteLine($"Quick Sort time: {quickTime:F6} seconds");
This benchmark creates 10,000 random integers.
RadixSort
sorts in place using digit-based
counting, while QuickSort
recursively partitions
the data, returning a new array.
Radix Sort often outperforms Quick Sort for integers with a small range of digits, but Quick Sort adapts better to varied data types. Results vary, but Radix Sort typically edges out on this dataset.
Source
This tutorial implemented Radix Sort in C#, covering numbers and strings, with a comparison to Quick Sort for performance insights.
Author
So far, I have written over 1400 articles and 8 e-books. I have over eight years of experience in teaching programming.
List all C# tutorials.