C# collection
last modified July 5, 2023
In this article we work with C# collections. Collections are specialized classes for data storage and retrieval.
There are three distinct collection types in C#:
- standard
- generic
- concurrent
The standard collections are found under the System.Collections
.
They do not store elements as specifically typed objects, but as objects of type
Object
. Standard collections include ArrayList
,
Hashtable
, Queue
, and Stack
.
The generic collections are found under System.Collections.Generic
.
Generic collections are more flexible and are the preferred way to work with
data. Generics enhance code reuse, type safety, and performance.
The generic collections include Dictionary<T, T>
,
List<T>
, Queue<T>
, SortedList<T>
,
and Stack<T>
.
Concurrent collections include BlockingCollection<T>
,
ConcurrentDictionary<T, T>
, ConcurrentQueue<T>
,
and ConcurrentStack<T>
.
C# List
List
is a strongly typed list of objects that can be accessed by
index. It can be found under System.Collections.Generic
namespace.
The namespace is automatically included with implicit usings.
var langs = new List<string>(); langs.Add("Java"); langs.Add("C#"); langs.Add("C"); langs.Add("C++"); langs.Add("Ruby"); langs.Add("Javascript"); Console.WriteLine(langs.Contains("C#")); Console.WriteLine(langs[1]); Console.WriteLine(langs[2]); langs.Remove("C#"); langs.Remove("C"); Console.WriteLine(langs.Contains("C#")); langs.Insert(4, "Haskell"); langs.Sort(); foreach (string lang in langs) { Console.WriteLine(lang); }
In the preceding example, we work with the List
collection.
using System.Collections.Generic;
The List
collection is located in the
System.Collections.Generic
namespace.
var langs = new List<string>();
A generic dynamic array is created. We specify that we work with strings with the type specified inside <> characters.
langs.Add("Java"); langs.Add("C#"); langs.Add("C"); ...
We add elements to the List using the Add
method.
Console.WriteLine(langs.Contains("C#"));
We check if the List contains a specific string using the Contains
method.
Console.WriteLine(langs[1]); Console.WriteLine(langs[2]);
We access the second and the third element of the List using the index notation.
langs.Remove("C#"); langs.Remove("C");
We remove two strings from the List.
langs.Insert(4, "Haskell");
We insert a string at a specific location.
langs.Sort();
We sort the elements using the Sort
method.
$ dotnet run True C# C False C++ Haskell Java Javascript Ruby
C# ArrayList
ArrayList
is a collection from a standard
System.Collections
namespace. It is a dynamic array. It provides
random access to its elements. An ArrayList
automatically expands
as data is added. Unlike arrays, an ArrayList
can hold data of
multiple data types. Elements in the ArrayList
are accessed via an
integer index. Indexes are zero based. Indexing of elements and insertion and
deletion at the end of the ArrayList
takes constant time. Inserting
or deleting an element in the middle of the dynamic array is more costly. It
takes linear time.
using System.Collections; var data = new ArrayList(); data.Add("Visual Basic"); data.Add(344); data.Add(55); data.Add(new Empty()); data.Remove(55); foreach (object el in data) { Console.WriteLine(el); } class Empty {}
In the above example, we have created an ArrayList
collection.
We have added some elements to it. They are of various data type, string, int
and a class object.
using System.Collections;
In order to work with ArrayList
collection, we need to use the
System.Collections
namespace.
var data = new ArrayList();
An ArrayList
collection is created.
data.Add("Visual Basic"); data.Add(344); data.Add(55); data.Add(new Empty()); data.Remove(55);
We add four elements to the array with the Add
method.
data.Remove(55);
We remove one element with the Remove
method.
foreach(object el in data) { Console.WriteLine(el); }
We iterate through the array and print its elements to the console.
$ dotnet run Visual Basic 344 Empty
C# collection initializers
Collection initializers allow to specify elements to the collection during the
object creation insice the {}
brackets.
var vals = new List<int>() { 1, 2, 3, 4, 5, 6, 7 }; int sum = vals.Sum(); Console.WriteLine(sum);
The example creates a list and prints its sum. The elements of the list are specified in the collection initializer.
$ dotnet run 28
C# SortedList
SortedList<T, T>
represents a collection of key/value pairs
that are sorted.
var sorted = new SortedList<string, int>(); sorted.Add("coins", 3); sorted.Add("books", 41); sorted.Add("spoons", 5); if (sorted.ContainsKey("books")) { Console.WriteLine("There are books in the list"); } foreach (var pair in sorted) { Console.WriteLine(pair); }
The example uses a sorted list to organize items.
var sorted = new SortedList<string, int>();
The sorted list has string keys and integer values.
if (sorted.ContainsKey("books")) { Console.WriteLine("There are books in the list"); }
With ContainsKey
we check if there are books in the collection.
foreach (var pair in sorted) { Console.WriteLine(pair); }
With foreach loop we go throug the collection and print its pairs.
$ dotnet run There are books in the list [books, 41] [coins, 3] [spoons, 5]
C# LinkedList
LinkedList
is a generic doubly linked list in C#. LinkedList only
allows sequential access. LinkedList
allows for constant-time
insertions or removals, but only sequential access of elements. Because linked
lists need extra storage for references, they are impractical for lists of small
data items such as characters.
Unlike dynamic arrays, arbitrary number of items can be added to the linked list (limited by the memory of course) without the need to realocate, which is an expensive operation.
var nums = new LinkedList<int>(); nums.AddLast(23); nums.AddLast(34); nums.AddLast(33); nums.AddLast(11); nums.AddLast(6); nums.AddFirst(9); nums.AddFirst(7); LinkedListNode<int> node = nums.Find(6); nums.AddBefore(node, 5); foreach (int num in nums) { Console.WriteLine(num); }
This is a LinkedList
example with some of its methods.
var nums = new LinkedList<int>();
This is an integer LinkedList
.
nums.AddLast(23); ... nums.AddFirst(7);
We populate the linked list using the AddLast
and
AddFirst
methods.
LinkedListNode<int> node = nums.Find(6); nums.AddBefore(node, 5);
A LinkedList
consists of nodes. We find a specific node and add an
element before it.
foreach(int num in nums) { Console.WriteLine(num); }
We are printing all elements to the console.
$ dotnet run 7 9 23 34 33 11 5 6
C# Dictionary
A dictionary
, also called an associative array, is a collection of
unique keys and a collection of values, where each key is associated with one
value. Retrieving and adding values is very fast. Dictionaries take more memory
because for each value there is also a key.
var domains = new Dictionary<string, string>(); domains.Add("de", "Germany"); domains.Add("sk", "Slovakia"); domains.Add("us", "United States"); domains.Add("ru", "Russia"); domains.Add("hu", "Hungary"); domains.Add("pl", "Poland"); Console.WriteLine(domains["sk"]); Console.WriteLine(domains["de"]); Console.WriteLine("Dictionary has {0} items", domains.Count); Console.WriteLine("Keys of the dictionary:"); var keys = new List<string>(domains.Keys); foreach (string key in keys) { Console.WriteLine("{0}", key); } Console.WriteLine("Values of the dictionary:"); var vals = new List<string>(domains.Values); foreach (string val in vals) { Console.WriteLine("{0}", val); } Console.WriteLine("Keys and values of the dictionary:"); foreach (KeyValuePair<string, string> kvp in domains) { Console.WriteLine("Key = {0}, Value = {1}", kvp.Key, kvp.Value); }
We have a dictionary where we map domain names to their country names.
var domains = new Dictionary<string, string>();
We create a dictionary with string keys and values.
domains.Add("de", "Germany"); domains.Add("sk", "Slovakia"); domains.Add("us", "United States"); ...
We add some data to the dictionary. The first string is the key. The second is the value.
Console.WriteLine(domains["sk"]); Console.WriteLine(domains["de"]);
Here we retrieve two values by their keys.
Console.WriteLine("Dictionary has {0} items", domains.Count);
We print the number of items by referring to the Count
property.
var keys = new List<string>(domains.Keys); foreach(string key in keys) { Console.WriteLine("{0}", key); }
These lines retrieve all keys from the dictionary.
var vals = new List<string>(domains.Values); foreach(string val in vals) { Console.WriteLine("{0}", val); }
These lines retrieve all values from the dictionary.
foreach(KeyValuePair<string, string> kvp in domains) { Console.WriteLine("Key = {0}, Value = {1}", kvp.Key, kvp.Value); }
Finally, we print both keys and values of the dictionary.
$ dotnet run Slovakia Germany Dictionary has 6 items Keys of the dictionary: de sk us ru hu pl Values of the dictionary: Germany Slovakia United States Russia Hungary Poland Keys and values of the dictionary: Key = de, Value = Germany Key = sk, Value = Slovakia Key = us, Value = United States Key = ru, Value = Russia Key = hu, Value = Hungary Key = pl, Value = Poland
C# Queues
A queue
is a First-In-First-Out (FIFO) data structure. The first
element added to the queue will be the first one to be removed. Queues may be
used to process messages as they appear or serve customers as they come. The
first customer which comes should be served first.
var msgs = new Queue<string>(); msgs.Enqueue("Message 1"); msgs.Enqueue("Message 2"); msgs.Enqueue("Message 3"); msgs.Enqueue("Message 4"); msgs.Enqueue("Message 5"); Console.WriteLine(msgs.Dequeue()); Console.WriteLine(msgs.Peek()); Console.WriteLine(msgs.Peek()); Console.WriteLine(); foreach (string msg in msgs) { Console.WriteLine(msg); }
In our example, we have a queue with messages.
var msgs = new Queue<string>();
A queue of strings is created.
msgs.Enqueue("Message 1"); msgs.Enqueue("Message 2"); ...
The Enqueue
adds a message to the end of the queue.
Console.WriteLine(msgs.Dequeue());
The Dequeue
method removes and returns the item at the beginning of
the queue.
Console.WriteLine(msgs.Peek());
The Peek
method returns the next item from the queue, but does not
remove it from the collection.
$ dotnet run Message 1 Message 2 Message 2 Message 2 Message 3 Message 4 Message 5
The Dequeue
method removes the "Message 1" from the collection. The
Peek
method does not. The "Message 2" remains in the collection.
C# Stacks
A stack is a Last-In-First-Out (LIFO) data structure. The last element added to the queue will be the first one to be removed. The C language uses a stack to store local data in a function. The stack is also used when implementing calculators.
var myStack = new Stack<int>(); myStack.Push(1); myStack.Push(4); myStack.Push(3); myStack.Push(6); myStack.Push(4); Console.WriteLine(myStack.Pop()); Console.WriteLine(myStack.Peek()); Console.WriteLine(myStack.Peek()); Console.WriteLine(); foreach (int item in myStack) { Console.WriteLine(item); }
We have a simple stack example above.
var myStack = new Stack<int>();
A Stack
data structure is created.
myStack.Push(1); myStack.Push(4); ...
The Push
method adds an item at the top of the stack.
Console.WriteLine(stc.Pop());
The Pop
method removes and returns the item from the top of the
stack.
Console.WriteLine(myStack.Peek());
The Peek
method returns the item from the top of the stack. It does
not remove it.
$ dotnet run 4 6 6 6 3 4 1
Source
In this article we worked with collections in C#.
Author
List all C# tutorials.