ZetCode

JavaScript Canvas getImageData Tutorial

last modified April 3, 2025

In this article, we explore the Canvas getImageData method in JavaScript. This method is essential for pixel-level manipulation of canvas content. Mastering getImageData is crucial for image processing and visual effects.

Basic Definition

The getImageData method returns an ImageData object representing pixel data for a specified portion of the canvas. This data includes RGBA values for each pixel in the selected area. The method takes four parameters.

Parameters are x, y coordinates of the top-left corner, and width and height of the rectangle to capture. The returned ImageData object contains width, height, and a Uint8ClampedArray of pixel data.

Basic getImageData Usage

This example demonstrates how to retrieve pixel data from a canvas.

index.html
<!DOCTYPE html>
<html>
<head>
    <title>Basic getImageData</title>
</head>
<body>

<canvas id="myCanvas" width="300" height="200"></canvas>

<script>
    const canvas = document.getElementById('myCanvas');
    const ctx = canvas.getContext('2d');
    
    // Draw a red rectangle
    ctx.fillStyle = 'red';
    ctx.fillRect(50, 50, 100, 100);
    
    // Get pixel data
    const imageData = ctx.getImageData(50, 50, 100, 100);
    console.log(imageData);
</script>

</body>
</html>

In this basic example, we create a canvas and draw a red rectangle. We then use getImageData to capture the pixel data of this rectangle.

The imageData object contains width, height, and data properties. The data property is a typed array containing RGBA values for each pixel in the area.

Reading Pixel Colors

This example shows how to read specific pixel colors from the canvas.

index.html
<!DOCTYPE html>
<html>
<head>
    <title>Reading Pixel Colors</title>
</head>
<body>

<canvas id="myCanvas" width="300" height="200"></canvas>
<p id="output"></p>

<script>
    const canvas = document.getElementById('myCanvas');
    const ctx = canvas.getContext('2d');
    const output = document.getElementById('output');
    
    // Draw a gradient
    const gradient = ctx.createLinearGradient(0, 0, 300, 0);
    gradient.addColorStop(0, 'red');
    gradient.addColorStop(1, 'blue');
    ctx.fillStyle = gradient;
    ctx.fillRect(0, 0, 300, 200);
    
    // Get pixel at position (150, 100)
    const pixelData = ctx.getImageData(150, 100, 1, 1).data;
    output.textContent = `RGBA: ${pixelData[0]}, ${pixelData[1]}, ${pixelData[2]}, ${pixelData[3]}`;
</script>

</body>
</html>

This example creates a gradient from red to blue and displays the RGBA values of the pixel at position (150,100). The pixel data is stored in a Uint8ClampedArray.

Each pixel is represented by four consecutive array elements (R,G,B,A). The values range from 0 to 255 for colors and 0 to 255 for alpha (transparency).

Creating a Grayscale Filter

This example demonstrates how to create a grayscale filter using getImageData.

index.html
<!DOCTYPE html>
<html>
<head>
    <title>Grayscale Filter</title>
</head>
<body>

<canvas id="myCanvas" width="300" height="200"></canvas>
<button onclick="applyGrayscale()">Apply Grayscale</button>

<script>
    const canvas = document.getElementById('myCanvas');
    const ctx = canvas.getContext('2d');
    
    // Draw a colorful rectangle
    ctx.fillStyle = 'red';
    ctx.fillRect(0, 0, 100, 200);
    ctx.fillStyle = 'green';
    ctx.fillRect(100, 0, 100, 200);
    ctx.fillStyle = 'blue';
    ctx.fillRect(200, 0, 100, 200);
    
    function applyGrayscale() {
        const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
        const data = imageData.data;
        
        for (let i = 0; i < data.length; i += 4) {
            const avg = (data[i] + data[i + 1] + data[i + 2]) / 3;
            data[i] = avg;     // R
            data[i + 1] = avg;  // G
            data[i + 2] = avg;  // B
        }
        
        ctx.putImageData(imageData, 0, 0);
    }
</script>

</body>
</html>

This example creates a canvas with three colored rectangles. When the button is clicked, the applyGrayscale function converts the image to grayscale.

The function gets all pixel data, calculates the average of RGB values for each pixel, and sets all three color channels to this average. The modified data is then put back on the canvas.

Creating a Color Inversion Filter

This example shows how to create a color inversion effect using getImageData.

index.html
<!DOCTYPE html>
<html>
<head>
    <title>Color Inversion</title>
</head>
<body>

<canvas id="myCanvas" width="300" height="200"></canvas>
<button onclick="invertColors()">Invert Colors</button>

<script>
    const canvas = document.getElementById('myCanvas');
    const ctx = canvas.getContext('2d');
    
    // Draw an image or shape
    ctx.fillStyle = 'yellow';
    ctx.fillRect(0, 0, 300, 200);
    ctx.fillStyle = 'purple';
    ctx.beginPath();
    ctx.arc(150, 100, 80, 0, Math.PI * 2);
    ctx.fill();
    
    function invertColors() {
        const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
        const data = imageData.data;
        
        for (let i = 0; i < data.length; i += 4) {
            data[i] = 255 - data[i];      // R
            data[i + 1] = 255 - data[i + 1]; // G
            data[i + 2] = 255 - data[i + 2]; // B
        }
        
        ctx.putImageData(imageData, 0, 0);
    }
</script>

</body>
</html>

This example creates a canvas with a yellow background and purple circle. The invertColors function inverts each color channel by subtracting it from 255.

Red becomes cyan, green becomes magenta, and blue becomes yellow in the inverted image. The alpha channel remains unchanged in this operation.

Edge Detection Algorithm

This advanced example demonstrates a simple edge detection algorithm.

index.html
<!DOCTYPE html>
<html>
<head>
    <title>Edge Detection</title>
</head>
<body>

<canvas id="sourceCanvas" width="300" height="200"></canvas>
<canvas id="edgeCanvas" width="300" height="200"></canvas>
<button onclick="detectEdges()">Detect Edges</button>

<script>
    const sourceCanvas = document.getElementById('sourceCanvas');
    const edgeCanvas = document.getElementById('edgeCanvas');
    const sourceCtx = sourceCanvas.getContext('2d');
    const edgeCtx = edgeCanvas.getContext('2d');
    
    // Draw a sample image on source canvas
    sourceCtx.fillStyle = 'white';
    sourceCtx.fillRect(0, 0, 300, 200);
    sourceCtx.fillStyle = 'black';
    sourceCtx.beginPath();
    sourceCtx.arc(150, 100, 50, 0, Math.PI * 2);
    sourceCtx.fill();
    
    function detectEdges() {
        const imageData = sourceCtx.getImageData(0, 0, sourceCanvas.width, sourceCanvas.height);
        const data = imageData.data;
        const width = imageData.width;
        const height = imageData.height;
        
        // Create a new ImageData for edges
        const edgeData = edgeCtx.createImageData(width, height);
        
        // Simple edge detection (difference with right and bottom pixels)
        for (let y = 0; y < height - 1; y++) {
            for (let x = 0; x < width - 1; x++) {
                const i = (y * width + x) * 4;
                const right = ((y * width) + (x + 1)) * 4;
                const bottom = ((y + 1) * width + x) * 4;
                
                // Calculate differences
                const diffR = Math.abs(data[i] - data[right]) + Math.abs(data[i] - data[bottom]);
                const diffG = Math.abs(data[i + 1] - data[right + 1]) + Math.abs(data[i + 1] - data[bottom + 1]);
                const diffB = Math.abs(data[i + 2] - data[right + 2]) + Math.abs(data[i + 2] - data[bottom + 2]);
                
                const edgeValue = (diffR + diffG + diffB) / 3;
                const edgeIndex = (y * width + x) * 4;
                
                edgeData.data[edgeIndex] = edgeValue;
                edgeData.data[edgeIndex + 1] = edgeValue;
                edgeData.data[edgeIndex + 2] = edgeValue;
                edgeData.data[edgeIndex + 3] = 255;
            }
        }
        
        edgeCtx.putImageData(edgeData, 0, 0);
    }
</script>

</body>
</html>

This example implements a basic edge detection algorithm. It compares each pixel with its right and bottom neighbors to detect color differences.

The algorithm calculates the average difference across all color channels. Larger differences indicate edges, which are drawn as grayscale values on the second canvas. This demonstrates advanced pixel manipulation.

Source

MDN getImageData Documentation

In this article, we have explored various techniques for using getImageData to manipulate canvas pixels. These methods are essential for image processing and creating visual effects in web applications.

Author

My name is Jan Bodnar, and I am a passionate programmer with extensive programming experience. I have been writing programming articles since 2007. To date, I have authored over 1,400 articles and 8 e-books. I possess more than ten years of experience in teaching programming.

List all JS Canvas tutorials.